

Status and Stability of NH3, HCI, and Hg Calibration Gases HCI Gas Delivery Panel Systems

Albert Guitjens – Market Development Technologies Manager

Safety Message

• Never pick up a cylinder by the cap

R&D Key Figures

278 Million € innovation budget

1100 researchers **35 nationalities**

* 2014 key figures

A Global R&D Network

Background – Gas Mixtures, Analytical Accuracy, and Traceability

Tighter gas specifications and tougher regulations require elimination of any possible source of errors (artifacts) for improved measurements through accurate and consistent analysis

<u>Analytical instruments</u>for reliable analysis, <u>gas distribution equipment</u> for consistent gas delivery, cylinder treatment technology and <u>gas mixtures</u> for accurate calibration are important to the process.

Gas manifolds and gas delivery systems are critical to protect the purity and integrity of the gases in use.

Accuracy vs. Precision

• Neither Precise nor Accurate

• Precise, But Not Accurate

• Accurate, But Not Precise

• Precise and Accurate

Calibration Gas Certificate Claims

- Concentration: "100 ppm NO in N₂"
 - "Certified" Concentration for the Component
 - Estimate of the "True Value" (but not "the" True Value)
- Accuracy: "+ / 1%"
 - Estimated Maximum Deviation from the True Value
 - Roll-up of All Known Sources of Error
- Traceability: "NTRM-1684"
 - Citation of Reference Standard(s) Used
 - "Anchor" for the True Value and the Minimum Accuracy

The Meaning of Accuracy

- Accuracy
 - A statistical estimate of how close an analyzed value is to the "True Value"
 - The "True Value" cannot be known without consuming the entire sample
- "Accuracy + / 1%"
 - "Based on our analysis, with all of the underlying sources of uncertainty evaluated, our reported value is within 1% of the true value"

Traceability Types

- Weight
 - Gravimetrically preparing a gas mixture using a high accuracy scale calibrated by "NIST" Weights.
- Gaseous
 - Standard Reference Material (SRM) High accuracy gas standard manufactured by NIST. Produced in 5.9 liter aluminum cylinders.
 - NIST Traceable Reference Material (NTRM) produced by a gas manufacturer with defined traceability to NIST standards. Typically in 29.5 and 47 liter aluminum cylinders.
 - Research Gas Material (RGM) produced by a gas manufacturer with NIST defined stability criteria and analyzed and certified by NIST.
 - Gas Manufacturing Intermediary Standard (GMIS) A reference standard produced from an NTRM or SRM.

Direct calibration of an instrument with gas reference material from a recognized metrology organization.

Key Gas Considerations

Selecting the right equipment	 Pressure regulator, valve
Verifying materials compatibility	 Stainless, steel, brass, plastic
Purging the transfer line	 To avoid contamination
Passivating the transfer line	 For reactive components
Service & maintenance	 To maintain the quality

Selection of the Right Equipment

- Single-Stage vs Two-Stage Pressure regulators
 - Single stage reduces the cylinder pressure to the delivery pressure in one step.
 - Two stage reduces the cylinder pressure to the working level in two steps.
 - Two stage is unaffected by changes in the cylinder pressure and provide precise control of the gas being delivered.

- Minimize the gas transfer lines
- Select appropriate fittings and transfer lines
 Compression, NPT, orbital welding

What material to use for transfer lines, regulators & other equipment?

Use of incompatible gas with the equipment may cause a leak, damage the system and cause personnel injury.

Permeation Data of Various Materials

Permeation and diffusion phenomena are due to the difference of partial pressure of the gases inside and outside of the line

Permeation of O₂ from air in argon

Efficient purging and leak tight condition are two of the most critical aspects to eliminate air contamination from the system

- Generally overlooked in many gas processes.
- More important when using reactive gases / components
- System is usually purged to remove contaminants from air and water vapor
- Before initial & subsequent system start up and changing out cylinders
- Purge the installation by compression and release cycles

Mixture Manufacturing

Manufacturing Methods

- This process allows blending, mixing, compression and analysis of the gas mixtures in a single operation.
- The cylinders produced from this process are completely homogeneous from top to bottom, from cylinder-to-cylinder, and even from batch-to-batch.
- Instantaneous and average compositions calculated and displayed continuously.

- Decomposition of the calibration mixture is one of the most common reasons for the analytical value to change over time.
- Under the conditions in the cylinder, the probability of different molecules reacting increases with
 - Cylinder pressure
 - Cleanliness of cylinder
 - Reactivity of the inner surface
 - Reactivity of the mixture components between themselves and with the cylinder
 - Both the concentration and chemical nature of the calibration mixture dictate the relative importance of these criteria

Stability of Calibration Mixtures

For providing stable reactive calibration gas mixtures,

there is **no** universal cylinder treatment,

cylinder preparation must be **adapted** to suit the chemical properties of the gases.

Air Liquide Specialty Gas manufacturing processes contain **proprietary methodologies** which have been consistently developed and refined

Shelf Life Studies

Ammonia (NH₃)Gas Mixtures – Specifcations & Traceability

- Traceability Paths:
- > NIST Research Gas Material (RGM) @ 35ppm 4 years stability (2018)
- > NTRM @ 14.39ppm ±0.17% 4 years stability (2017)
- VSL Primary Reference Materials (PRM) 60, 100, 200 & 300ppm
- Gas Manufacturers Intermediary Standard (GMIS)
- Analytical Accuracy: ±1 to ±2%
- Blend Tolerance: @<10ppm: ±1ppm abs. & >10ppm: ±5% rel.
- Guaranteed Stability: 12 months
- Manufacturing Capability: 2 plants
- Lead-time: 4-5 weeks

HCI CEMS Monitoring – Preferred Mode of Compliance

- For EPA
 - Highly successful pollution abatement platform
 - Proven commissioning and QA practices
 - Established emissions reporting mechanisms
- For Sources
 - Well supported technology and infrastructure
 - Instrument, equipment and software companies
 - System integrators and consultants
 - Specialty gas manufacturers
 - Low risk of non-compliance
 - Side benefit of plant operations control data

HCI CEMS Monitoring – Preferred Mode of Compliance

PS18 Wording Excerpt

 $3.18 \cdot \text{Reference} \cdot \text{Gas} \cdot \text{Standard} \cdot \text{means} \cdot a \cdot \text{NIST-traceable} \cdot \text{gas} \cdot \text{standard} \cdot \text{containing} \cdot a \cdot \text{known} \cdot \text{concentration} \cdot of \cdot \text{HCl} \cdot \text{certified} \cdot \text{in} \cdot \text{accordance} \cdot \text{with} \cdot \text{an} \cdot \text{EPA} \cdot \text{traceability} \cdot \text{protocol} \cdot \text{in} \cdot \textbf{section} \cdot \textbf{7}. \textbf{1} \cdot \text{of} \cdot \text{this} \cdot \text{PS}. \P$

¶

7.0-Reagents and Standards.

7.1 • Reference Gases. • Reference gases (e.g., cylinder gases or liquid evaporative standards) • used to meet the requirements of this · PS · must · be · NIST · certified · or · NIST · traceable · and · vendor · certified · to · ±5.0 · percent · accuracy. • HCI · cylinder gases · must · be · certified · according · to · *Reference · 5 · in · section · 16* · of · this · PS · through · a · documented · unbroken · chain · of · comparisons, · each · contributing · to · the · reported · uncertainty. • Liquid · evaporative · standards · must · be · certified · using · the · gravimetrically - based · procedures · of · the · latest · version · of · the · EPA · Traceability · Protocol · for · Qualification · and · Certification · of · Evaporative · HCl · Gas · Standards · and · Humidification · of · HCl · Gas · Standards · and · Humidification · of · HCl · Gas · Standards · from · Cylinders · (see · EPA - HQ - · OAR - 2013 - 0696 - 0026. pdf). ¶

 $7.2 \cdot Cylinder \cdot gas \cdot and \cdot / \cdot or \cdot liquid \cdot evaporative \cdot standards \cdot must \cdot be \cdot used \cdot within \cdot their \cdot certification \cdot periods. \P$

7.3-High-concentration-cylinder-gas-or-liquid-evaporative-HCl-standards-may-be-diluted-for-use-in-thisspecification.-You-must-document-the-quantitative-introduction-of-HCl-standards-into-the-system-using-Method-205, found-in-40-CFR-part-51, appendix-M, or-other-procedure-approved-by-the-Administrator.-¶

¶

16.0-Bibliography¶

5. • EPA·Traceability·Protocol·for·Assay·and·Certification·of·Gaseous·Calibration·Standards, U.S.·Environmental· Protection·Agency·office·of·Research·and·Development, EPA/600/R-12/531, May·2012. • ¶

• Net Impact – No Available Calibration Gases

Hydrogen Chloride (HCI)Gas Mixtures – Specifcations & Traceability

- Traceability Paths:
- NIST Research Gas Material (RGM) @ 8-12ppm 2 years stability Currently 1.5 to 11ppm HCI bal N2 as EPA Protocols.
- > 18 RGM candidate mixes at NIST to capture 1.5ppm to ~950ppm.
- Gas Manufacturers Intermediate Standard (GMIS)
- ALT114 Gas Manufacturer's Alternative Certified Standards (GMACS) – 1ppm to 1%
- Analytical Accuracy: ±2 to ±4%
- Blend Tolerance: ±10% rel.
- Guaranteed Stability: 12 months
- Manufacturing Capability: 2 plants
- Lead-times: 3-4 weeks GMACS & 6-8 weeks EPA Protocols

HCI GMACS - Datasheet

- GMACS Certification Scheme
- HCI Gas Delivery System

Mercury Compressed Gas Standards - EPA

- Mercury compressed gas standards are a viable option
- Availability of Hg concentrations between 1 μg/M³ to 150 μg/M³

(Note: concentrations >40 μ g/M³ at reduced pressure)

- Paths to traceability:
 - Elemental Mercury generator NIST certified up to 40 µg/M³
 - Mercury analyzer is confirmed by NIST as having a linear fit at least up to 200 $\mu g/M^3$
- ALT118 / GMACS from USEPA Provides well-defined NIST traceability procedures
- Coordinating with NIST to have fleet of candidate mercury/N2 RGMs certified
- Uncertainties to be well below the required ±5%
- Guaranteed stability: 12 months White TOP Cylinders
- Manufacturing Locations: 1 plant
- Lead-time: 4 to 6 weeks

QUESTIONS??