Gnsultants

trinityconsultants.com

PC MACT Updates

Cemtek Environmental Emissions Monitoring Seminar Costa Mesa, CA September 28, 2016

> Vineet Masuraha Trinity Consultants Irvine, CA

Agenda

- 1. Introduction
- 2. Overview of the applicable AQ requirements
- 3. Overview of emissions and emission sources
- 4. Normal vs. S/S vs. malfunction operations
- PC MACT regulations limits and monitoring options
- 6. PC MACT updates
- 7. Discussions and questions

Trinity Consultants, Inc.

- Environmental consulting services providing firm headquartered in Dallas, TX
 - 40 years of experience in North America with significant cement industry experience
 - Serving >2,500 industrial clients and >4,000 projects per year
 - 550+ employees
 - ~40% owned by employees and ~60% by PE
 - 40+ offices with 5 international offices
 - Most of the senior PMs have been with the firm >15 years
- > Known as a leader in Air Quality

Trinity's Cement Expertise

- Trinity is actively involved in trade associations and conferences for cement/aggregate industries
- > Serves most of the cement companies
- Deep experience from permitting greenfield to modifications, alternate fuels, enforcement matters, waste, water, and all other issues impacting cement companies
- > Have served ~60 cement plants on various projects

Associate Member of: Portland Cement Association AWMA – Cement Lime & Non Metallic Mineral Processing Committee National Lime Association Cement Kiln Recycling Coalition

About Trinity California

- Core competency is Environmental Regulatory Permitting and Compliance Services to Industry for more than 40+ years
- > CA staff size is approximately 60 primarily engineers and scientists located throughout CA
 - Offices in Irvine, Bakersfield, Oakland, and Sacramento
- > Most of the staff is very familiar with cement operations
- Staff is very experienced with CA Air Districts/All other agencies reporting, permitting, compliance, and other related services

Regulated Air Emissions

Current NAAQS

Dollutont	Primary Standards		Secondary Standards	
Pollulani	Level	Averaging Time	Level	Averaging Time
со	9 ppm	8-Hour	None	
	35 ppm	1-Hour		
Pb	0.15 μg/m³	3-Month (2008 std.)	Same as Primary Standard	
	1.5 μg/m³	Quarterly (1978 std.)	Same as Primary Standard	
NO ₂	0.053 ppm	Annual	0.052.000	Appuel
	0.100 ppm	1-Hour (2010 std.)	0.053 ppm Annual	
PM ₁₀	50 μg/m³	Annual	Same as Primary Standard	
	150 μg/m³	24-Hour	Same as Primary Standard	
PM _{2.5}	12.0 µg/m³	Annual	Same as Primary Standard	
	35 μg/m³	24-Hour (2006 std.)	Same as Primary Standard	
Ozone	0.075 ppm	8-Hour (2008 std.)	Same as Primary Standard	
	0.08 ppm	8-Hour (1997 std.)	Same as Primary Standard	
SO ₂	0.03 ppm	Annual (1971 std.)		
	0.14 ppm	24-Hour (1971 std.)	0.5 ppm 3-hour	
	0.075 ppm	1-hr (2010 std)		

Four Categories of Emissions

- Normal Production operation emissions
- Planned SS Startup and shutdown emissions during normal operations that are predictable and planned
- Unplanned SS Unexpected emissions that are quantifiable, unscheduled, and not anticipated
- Malfunction/Emission Events Other emissions that not authorized such as acts of God, accidents, malfunctions, unexpected emissions during SS, and noncompliant operations

Normal Operation = Steady State or Batch Production + Planned SS What is NOT Planned SS = EE + Unplanned SS

SSM – Startup, Shutdown, and Malfunction and MSS – Maintenance, Startup, and Shutdown TripityA

Regulations Vs. Permits

- > Regulations generate requirements that the facility must follow
 - Emission Standards
 - Testing, Monitoring, Record Keeping and Reporting
- > Permits codify all the requirements that apply to equipment and facilities
 - Pre-Construction Permits (NSR/PTC)
 - Operating Permits (PTO/Title V)

Emissions Reporting

- > CEMS are used to gather emissions data to demonstrate compliance with regulatory limits
- > The CEMS emissions data is used to generate reports which are submitted to applicable regulatory bodies
 - ✤ US EPA
 - State
 - Local Air Pollution Control Districts

Why is a CEMS needed?

- > Compliance demonstration for applicable emission limits and standards such as:
 - New Source Performance Standards (NSPS)
 - Maximum Achievable Control Technology Standards (MACT)
 - Best Available Retrofit Technology (BART)
 - New Source Review (NSR) Permit
 - Prevention of Significant Deterioration (PSD) Permit
 - Operating (Title V) Permit
 - Greenhouse Mandatory Reporting Rule (MRR)
 - Acid Rain Program (Part 75)
 - NO_x Budget Program/Clean Air Interstate Rule (CAIR)
 - State-Specific permits and programs
 - State NSR and Operating permits
 - RECLAIM

Key CEMS Requirements

- > Emission Limits and Standards Specify sources to be monitored (pollutant, averaging period, mass/concentration, etc.)
- > Performance Specify monitoring system design, installation, testing, operation, and maintenance requirements
- > QA/QC Requirements Specify QA plan, QC procedures, and QA audit procedures
- > Reporting Requirements Specify frequency, type of report, format, content, and other details

NSPS (40 CFR 60)

- > Applies to Criteria Pollutants
- > Developed and listed by industry and equipment
 - Subpart F: Portland Cement Manufacturing
 - Subpart Y: Coal Preparation Plants
 - Subpart OOO: Non-metallic Mineral Processing
 - Subpart IIII, JJJJ: Diesel/Gas Engines
- > Applicability must be evaluated for new, modified, and reconstructed sources

NSPS Subpart F Key Dates – 08/17/1971 and 06/16/2008 NSPS Subpart OOO Key Dates – 08/31/1983 and 04/22/2008

Subpart F Pollutants Regulated

Pollutants	Date
PM (0.3 lb/ton) Opacity	08/17/1971
PM (0.02*/0.07** lb/ton) SO ₂ (0.4*** lb/ton) NO _x (1.5*** lb/ton) Opacity	06/16/2008

* New or Reconstructed
** Modified
*** New, Reconstructed, or Modified

PM Emissions Monitoring

- > Demonstrate initial compliance through an initial performance test using Method 5 or Method 51.
- > Monitor <u>continuous</u> performance through a PM CPMS (Continuous Parametric Monitoring System)
 - Based on annual three run stack test
 - Annual compliance test determines source operating limit

NO_x and SO₂ Monitoring

- Continuously monitoring and recording concentration by volume of NO_X and SO₂ emissions
 - Using Continuous Emissions Monitoring System (CEMS)
 - 30-Day Rolling Average

Subpart Y - Coal Processing

Thermal Dryer

- If all thermal input is from an affected facility covered by another NSPS (such as a lime or cement kiln), not subject to this Subpart.
- SO₂, NOx and/or CO standards not applicable if
 - heat input from source other than coal or residual oil,
 - source subject to limit from another subpart
 - use waste heat or residual from coal or residual oil

NESHAP (40 CFR Part 63)

- > National Emission Standard for Hazardous Air Pollutants (NESHAP) - 40 CFR Part 63
 - Hazardous Air Pollutants (HAPs) sources
 - Major and area sources
 - Existing and new
 - Maximum Achievable Control Technology (MACT)

Kilns (including Alkali Bypass, In- line Coal Mills)	Raw Mills and Raw Material Dryers	Clinker Coolers	Finish Mills	
Storage Bins	Conveying System Transfer Points	Bulk Loading/ Unloading/Bagging	Open Clinker Piles	Gnsultants

PC NESHAP (40 CFR 63 Subpart LLL)

- > Final Rule 9/12/2013 (upgrade from 1999 rule)
- > Technical Amendments
 - Proposed 11/2014
 - Finalized 7/2015
- > Corrections 9/11/2015
- > EPA Guidance
 - Spring 2013
 - Spring 2016
 - Docket memos 2015
 - PCA Span Memo Summer 2016

Subpart LLL Requirements

- > Emission limits and operating parameters
- > Continuous monitoring with CEMS/CMS
- > Work practices for kiln startup/shutdown
- > Operating plans and procedures
- > Recordkeeping and reporting through data acquisition system (DAS)

Standards: Kilns, Cooler, and Dryers

SOURCE	POLLUTANT	LIMIT	UNITS
Existing Kiln	PM	0.07	lb/ton clinker
	D/F	0.2 (or 0.4)	ng/dscm (TEQ)
	Mercury	55	lb/MM ton clinker
	THC or OHAP	24 or 12	ppmvd
	HCI	3	ppmvd
New Kiln	PM	0.02	lb/ton clinker
	D/F	0.2 (or 0.4)	ng/dscm (TEQ)
	Mercury	21	lb/MM ton clinker
	THC or OHAP	24 or 12	ppmvd
	HCI	3	ppmvd
Existing Cooler	PM	0.07	lb/ton clinker
New Cooler	PM	0.02	lb/ton clinker
Any RM Dryer	THC	24	ppmvd

Note: Table applies to major and area sources in normal operation unless specified

Startup/Shutdown Mode

> EPA regulatory definition

- Startup *begins* when a kiln ID fan is on <u>and</u> begins firing fuel in the main burner
- Startup *ends* when kiln feed is continuously introduced into the kiln for ≥120 minutes or when the kiln feed rate exceeds 60% of the kiln design limitation rate (whichever occurs first)
- Shutdown begins when continuous kiln feed to the kiln is halted and ends when continuous kiln rotation ceases

S/S - Work Practices

- > Kiln startup fuel (one or combination) until kiln reaches 1200°F:
 - natural gas, synthetic natural gas, propane, distillate oil, synthesis gas, and ultralow sulfur diesel
- > Dry sorbent and activated carbon systems used for HAP control must be turned on and operating <u>when</u> <u>gas stream to APCD reaches 300°F</u>
- > PM and other HAP control devices must be operational during startup/shutdown

Compliance Demonstration

> Initial

- Performance testing
- Setting operating parameter limits
- > Continuous monitoring
 - ✤ CEMS
 - Parametric
 - Visible emissions
- > Routine stack tests
- > Operation and maintenance procedures

Performance Testing

> Stack testing

- Annually PM, Hg*
- ✤ 30-month OHAP, HCl/SO₂, D/F

> CEMS

- ✤ HCl, Hg, THC
- Initial, first 30-operating days

> Visible emissions

- Initial Method 9 for 10-minute observation
- Reduced frequency

> Performance evaluations prior to testing

*If less than detection limits for two annual test can reduce frequency to 30 months

Operating Limits

- > Demonstration of Compliance with Emission Standards
 - RM On, RM Off, and separate stacks
- > Parametric Monitoring
 - PM CPMS
 - ACI injection rate
 - Scrubber parameter
- > Using CEMS for Alternative Monitoring
 - THC for OHAPs
 - ✤ SO₂ for HCl

Periodic QA Activities

CMS	Daily	Quarterly	Annual
PM CPMS	CD	Per Mfr's Specs	
THC CEMS	CD	CE – PS 8A	RATA – PS 8
HCI CEMS	CD	CGA – PS 15	RATA – PS 15
Hg CEMS	CD	CGA – PS 12A	RATA – PS 12A
Hg Sorbent Trap	Per PS 12B	Per PS 12B	RATA – PS 12B
O ₂ CEMS	CD	CGA – PS 3	RATA – PS 3
Flow Monitor	CD	RAA – PS 6	RATA – PS 6

How Do Revised MACT Compliance Actions Work Together?

PCMACT Plans

- > O&M plan
- > Site-specific performance test plan
- > Site-specific emissions monitoring plan
 - Each CPMS/CEMS
 - Quality Assurance/Quality Control
- > Opacity monitoring plan (VEs)
- > BLDS monitoring plan

O&M Plan

> O&M (40 CFR 63.1347)

- Procedures for proper operation and maintenance of the affected source and air pollution control devices
 - Grouped by plant system
- Procedures for inspection of combustion system components of each kiln/in-line kiln raw mill at least once per year
- Fugitive dust emissions control measures for open clinker storage piles per 63.1343(c)
- Address periods of startup and shutdown
- Corrective action process
- Certification of compliance at all times in summary reporting

Recordkeeping Requirements

- > Readily available and retained for 5 years
 - Most recent 2 years must be on-site
- > Daily clinker production rates and kiln feed rates
- > 30-day rolling averages
 - ✤ HCl, THC, Hg
 - PM CPMS,
 - Alternative THC for OHAPs, SO₂, for HCl
- > 3-hour rolling averages
 - ✤ D/F

Recordkeeping Requirements

- > Date, time and duration of <u>each</u> startup and shutdown
 - Include quantity of feed and fuel for each S&S
- Date, time and duration of <u>each</u> malfunction event (if causes failure to meet a standard)
 - Includes monitoring malfunctions
 - Must list source affected, volume of pollutant emitted in excess of standard, and the method used to make that determination
 - Actions taken to minimize emissions
- > Other exceedances of emissions standards or parametric limits
 - Date and duration
 - Specific actions taken for each including inspections, corrective action and repeat performance tests
 - Results of those actions

Reporting Requirements

- > Reporting requirements outlined in §63.1354(b), §63.10(d),(e)
 - Performance & opacity test results; notification of compliance status
 - Performance evaluation results
 - Excess emissions and continuous monitoring system performance report
 - Noncompliance with emission limit or operating parameter limit
 - CMS downtime > 10% of operating time
 - Semiannual summary report
- > Compliance and Emissions Data Reporting Interface (CEDRI)

PC MACT - Lingering Topics

- > June 2016: suspension of Hg above-span
- > Overall plants have evolved to learn and implement the changes
 - Enhanced communications between departments more coordination ("not just the way it used to be")
 - Tracking compliance to prevent operating limit issues
 - Learning curve and system adjustments for new APCDs
 - Some companies have launched PC MACT audits

Instrumentation and DAS Topics

- > Ongoing plant learning curve; costs for on-call assistance
- > Compliance calculations and commingled stacks: follow up clarifications
- > DAS handling of negative opacity readings, startup/shutdown or downtime - used correctly in daily averages?
- > Ongoing reporting questions on 30/60 day timing and CEDRI input options
- > New guidance for dioxin and furan temperature block determinations

Common CEMS Performance Issues and Causes

- > Failed Calibrations
- > System malfunctions
 - Sample system leak
 - Sample flow issue
 - Moisture in sample system
 - Excessive heat
- > Analyzer malfunctions
 - Operating out of specification
 - Maintenance required
 - Adjustment required

Common CEMS Data Audit Findings

- > CEMS data hourly averages not calculated in compliance with requirements (No fifteen minutes segments)
- > Retention of CEMS data (5 years for Title V facilities)
 1 Hour Data

Gnsultants

■ 1st Qtr (15 Min.) ■ 2nd Qtr (15 Min.) ■ 3rd Qtr (15 Min.) ■ 4th Qtr (15 Min.)

Questions/Discussions

