NOx: Troubleshooting and Optimization of Combined Cycle SCR Systems

L. J. Muzio
Fossil Energy Research Corp.
Laguna Hills, CA

CEMTek Environmental 2016 Emissions Monitoring Seminar and Training

> September 28, 2016 Santa Ana, CA

Optimizing Gas Turbine SCR Performance

Topics

- Troubleshooting How to Distinguish NH₃ Maldistribution from Bypass
- AIG Tuning Catalyst Inlet NH₃/NO_x Distribution
- Identifying Flue Gas Bypass
- Catalyst Management/Measuring Catalyst Activity

Simple Cycle Gas Turbine SCR

Combined Cycle Gas Turbine SCR

Direct Injection/Dual Function Catalyst

FERCo

Troubleshooting

Why?

A simple stack test can distinguish

(NH₃ Maldistribution/Flue Gas Bypass)

NH₃/NO_x RMS Effects

10 8 6 4 2 0 0 5 10 15

Bypass Effects

How to best generate this data?

- Wet Chemical NH₃ measurements?
- Continuous NH₃ measurements?

TDL Instrumentation

 Testing facilitated using a continuous TDL NH₃ analyzer

 Data set can be generated in less than a day

Data available in real time.

- Unisearch NH₃ TDL
 - Dual Path
 - Two Channel
 - Fiber Optic Coupled

NH₃-TDL Lines of Site

TDL NH₃ Measurements on a Large Combined Cycle

NH₃/NO_x RMS Effects

Bypass Effects

AIG Tuning

•What is it?

•Making sure that NO_x and NH₃ are matched up at every location on the catalyst

•How is it Done?

- •By making NO_x measurements at the exit of the catalyst
- •It is not necessary to measure both NO_x and NH₃

Gas Turbine SCR AIG Tuning

- Tuning is Facilitated by Installing a Permanent Sample Grid at the Catalyst Exit:
 - Not feasible to manually traverse a large combined cycle system for AIG tuning
 - Typically need 36 to 60 probes depending on AIG design
- With Permanent Probes Tuning can Typically be done in <u>One</u>
 <u>Day</u>
- The NO_x Profiles at the Exit of the Catalyst can also Help Identify Bypass

NH₃/NO_x Distribution and AIG Tuning

New Catalyst

Catalyst Near End-of-Life

How Well is Your AIG Tuned? (As Found RMS Values)

Most of the GT AIGs we encounter are not tuned very well!

How Important is the NH₃/NO_x Distribution?

- SCAQMD is pushing NO_x from 5 to 2 ppm in So. Cal.
- Assumption is that just adding more catalyst will be the solution

RMS=20% Add Catalyst

K=80/RMS=20% —RMS=20%, 50% More Cat 12 10 88 80 6 40 12 2 8 10 0 1 2 3 4 5 6 NOx, ppm@15% O2 dry

Tune AIG To RMS=10%

- Just tuning the AIG allows 2 ppm NO_x to be achieved
- Adding 50% more catalyst helps, but not as much as tuning

Outside View of a Permanent Sample Grid on a Large Combined Cycle

Sample probe exit ports

Sample probe lines brought down to grade

Sample Probes Attached to Catalyst Modules

FERCo's Multipoint Instrumentation

- Samples 48 points in 12-15 minutes (4 groups of 12)
- NO_x and O₂

AIG Design Affects Tuning

No Adjustments: Some systems have no adjustment valves- Bad Idea!!!

1-D: Commonly used design

Multi Zone: Better

Two Horizontal Zones

Horizontal and Vertical Lances

Three Horizontal Zones

AIG With No Adjustability

AIG: No Adjustability

Permanent
Probe Grid for
Tuning.
Difficult to
Tune Without!

Normalized NH₃/NO_x Profiles – As Found

MP306

Normalized NH₃/NO_x Profiles – Before & After

MP306

Duct Burners Impact AIG Tuning

AIG Tuning, 1-D AIG Design; NH₃/NO_x

AIG Tuning, 1-D AIG Design; Outlet NO_x

AIG Tuning, 2-D AIG Design; Outlet NO_x

AIG Design:2-Zones Horizontally

AIG Tuning, Multi Zone AIG Design; NH₃/NO_x

<u>Tuned</u>, <u>RMS</u> = 5%

Direct Injection of Aqueous Ammonia@ Turbine exhaust

As Found, RMS = 14%

Tuned, RMS = 3%

Benefits of AIG Tuning

- Reduce NH₃ slip at required outlet NO_x
- Reduced Reagent Consumption

GT Load	As Found	Tuned	Reagent Reduction
MW	lb/hr	lb/hr	%
244	669	633	5
174	410	355	13
29	42	35	17

Reduced Required GT Water Injection

GT Water Inj	Inlet NO _x	NH ₃ Slip
GPM	ppm	ppm
30	20	3
26	26	3.5

Coal SCR: AIG Design Influences Tuning

Cross Grids

Multi-Zones

Mixer with 1-D Adj.

Mixer with Multi Zone Grid

Delta Wings

Coal:AIG Design Effects

Bypass

NO_x Profiles Can Also Help Detect Bypass

NO_x Profiles Can Also Help Detect Bypass

Catalyst Management

Catalyst Management

- Tracking catalyst activity and NH₃/NO_x distribution
- Ensure continued environmental compliance
- Plan for catalyst replacements

Measuring Catalyst Activity

- There are Laboratory Protocols for testing SCR catalyst
 - Coal
 - Natural Gas (Gas Turbine Systems)

Measuring Catalyst Activity: Coal

VGB Guidelines

EPRI Protocol

EPEI BATTA TOTAL

Protocol for Laboratory Testing of SCR Catalyst: 2nd Edition

1014256

Measuring Catalyst Activity: GT SCR/CO

Laboratory Testing Guidelines for Gas Turbine Selective Catalytic Reduction (SCR) and CO Catalysts

3002006042

- Until recently there were no standard testing guidelines for GT SCR or CO catalyst. This led to variations among laboratories.
- Last year EPRI issued a guideline for testing GT SCR & CO Catalyst
- Available at the EPRI Website (Report 3002006042)

Catalyst Management

- Tracking catalyst activity and NH₃/NO_x distribution
- Insure continued environmental compliance
- Plan for catalyst replacements

Measure RP Insitu

- While sending samples to a lab for activity measurements historically has been a key step in catalyst management, it is no longer necessary.
- Today an owner operator can take control of catalyst management with the CatalysTraK®, a system that measures catalyst activity and RP in-situ.
- Insitu tests are performed at actual full scale operating conditions
- Tests can be conducted at any time, no outage required
 - Performed during an annual compliance test
 - At any time there may be an issue with catalyst performance
- Applicable to both NO_x and CO catalyst

In Situ Catalyst Activity Measurement*

Traditional Lab Measuremet

Typically one per year

$$K_{Lab} = -A_{Vdesign} \ln(1-\Delta NO_x)_{Lab}$$

@NH3/NOx=1.2

FERCo's CatalysTrak®*

- in situ measurement
- · No outage required

$$K_{\text{In-situ}} = -A_{\text{Vactual}} \ln(1-\Delta NO_x)_{\text{full scale}}$$
 @NH3/NOx>1 locally

* Patented Process

In Situ CatalysTrakTM Measurements: Individual Layers

CatalysTraK[®] was originally developed for coal-fired SCR's. These systems are characterized by multiple catalyst layers.

- First 4-years of operation beginning in 2005
 - 700 MW unit
 - E. bituminous coal
- SCR on-line May 2002
 - Seasonal operation
 - Two reactors
 - 3 + 1 configuration
 - Initial load: 3 layers honeycomb catalyst
 - Layer 1 replaced with plate catalyst prior to 2006 ozone season

Volume of Data: Laboratory vs. In Situ

Annual Laboratory Analysis

On-Demand CatalysTrakTM Measurements

CatalysTraK[®] Supplemental Injection Grid

Supplemental injection grids located upstream of both CO and NO_x Catalysts.

CatalysTraK® Reactor Potential Results

CatalysTraK[®] tests run over two years show the RP is well above the minimum level required.

CO Catalyst Testing

As with SCR catalyst, CO catalyst performance also degrades over time.

Laboratory CO tests involves just measuring the amount of CO oxidation that occurs across the sample, while simulating full-scale temperature and space velocity.

Why not just measure the oxidation across the actual CO catalyst bed while it is operating?

CatalysTraK® CO Catalyst Test Results

The tests run over two years show CO oxidation rates of between 96% and 98%.

Summary

- Simple stack measurements (NH₃ vs NO_x) can distinguish Gas Bypass from NH₃/NO_x maldistribution
 - Facilitated by using a continuous TDL analyzer to make the NH₃ measurements
- AIG tuning facilitated using a permanent probe grid at the catalyst exit
 - With a probe grid and multipoint sampling, AIG tuning completed in one day
- AIG Design affects how well a unit can be tuned
- NO_x profiles at the SCR outlet can also help diagnose areas of Gas Bypass

Summary (Continued)

- Historically, lab tests have been used to monitor the performance of both SCR and CO catalysts over time.
- EPRI recently released GT SCR/CO testing guidelines (Report 3002006042)
- Recent tests showed both SCR and CO catalysts can easily be characterized in-situ.
- The in-situ technique is simple.
- It can be done easily during the annual compliance test, does not require an outage, and provides an opportunity to obtain a more comprehensive data set.

Questions?

