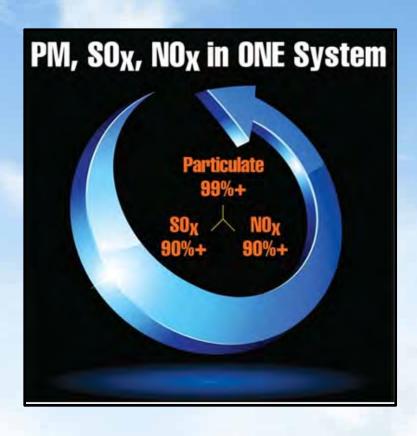
NOx Treatment

by Selective Catalytic Reduction

with Catalytic Ceramic Filter Elements

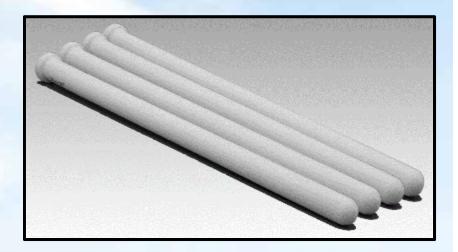

September 28, 2016

Rod Gravley

Technology Director

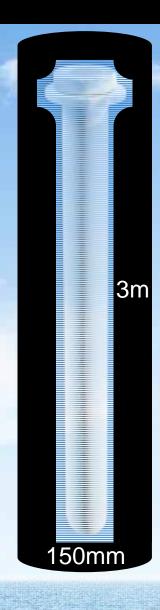
Ceramic Catalyst Filters for Multi-Pollutant Control

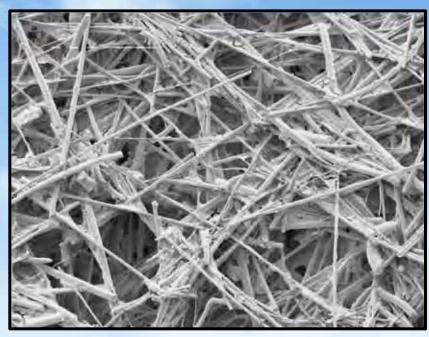
Also Treats


- CO
- VOC
- Hg
- Pb
- Se
- Other Metals
- Dioxin

Tri-Mer is the Largest Supplier of Ceramic Filter Systems in the World

Presentation Outline


- Technology Basis (SCR)
- System Design
- NOx Control
- Multi Pollutant Performance
- Project Delivery

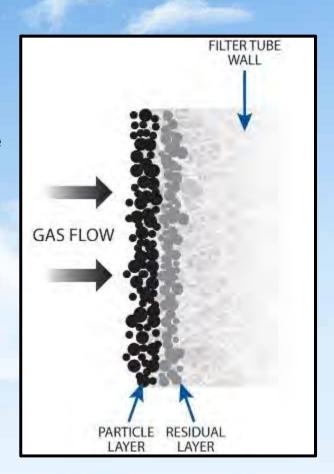

UltraCat Ceramic Filter Elements

CHARACTERISTICS OF (LOW-DENSITY) CERAMIC ELEMENTS				
Form	Monolithic rigid tube			
Composition	Refractory fibers plus organic and inorganic binding agents			
Porosity	About 80-90%			
Density	About 0.3 - 0.4 g/cc			
Support	Self supporting from integral flange			
Geometry	Outer diameter up to 150 mm; Length up to 3 m			

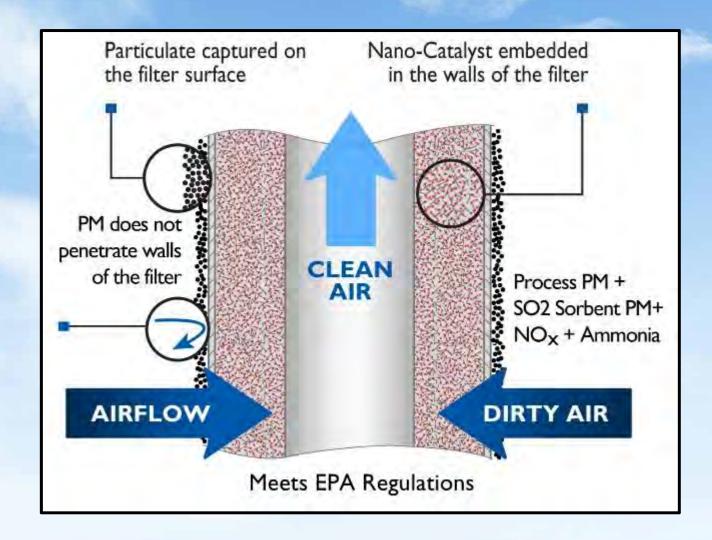


UltraCat Ceramic Filter Construction

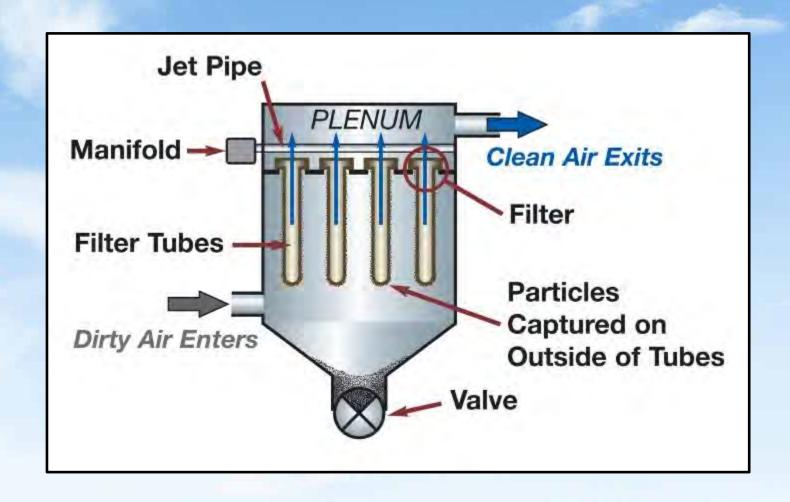
Ceramic Filter Element Outer Surface



Inner Fibers with Imbedded Catalyst


Technology Basis Filtration Mechanism

- Dust cake builds upon the residual layer, does not penetrate into filter body
- Cake is periodically removed with a reverse pulse of air, a brief low volume shockwave
- Can handle variable loading conditions
- Tube does not flex like a Fabric Filter bag,
 No mechanical wear = long filter life



Protection from Catalyst PM Blinding and Poisoning

Filter Elements - Basic Operations

Filter Elements – Operating Temperatures

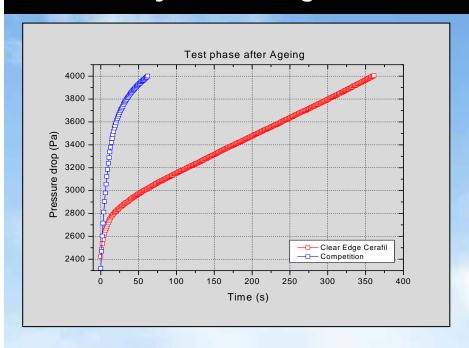
PM + Acids + NO_x 280 \rightarrow 750 °F

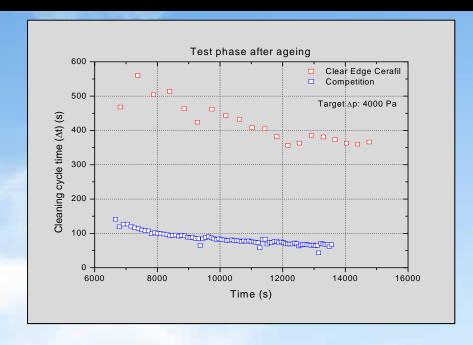
Low temp applications might require second stage of catalyst

PM + Acids $200 \rightarrow 1200 \,^{\circ}F$

PM only $200 \rightarrow 1,650$ °F

200 °F


Temperature Scale

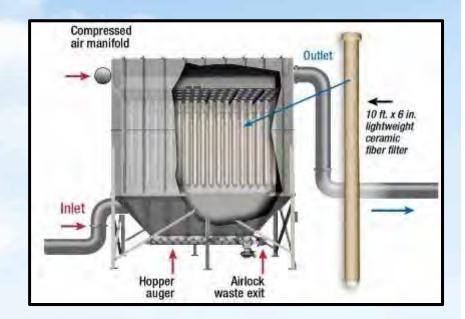

1,650 °F

Acids Include: SO₂, HCl, HF, SO₃

UltraCat by Clear Edge vs. Other Filter Brands

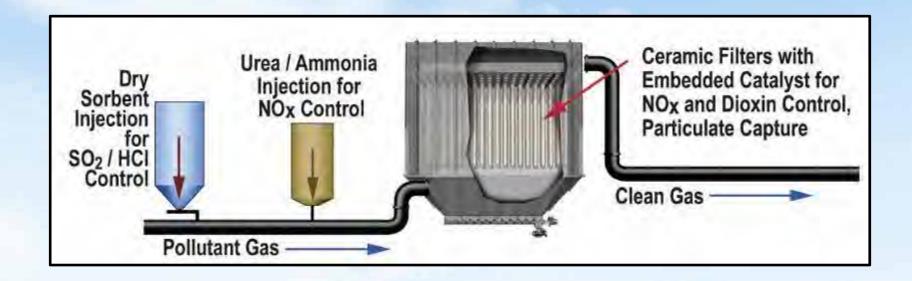
Parameter	UltraCat by Clear Edge	Others		
Porosity	80% (dense outer wall)	90% (open outer wall, dense inner wall, gradient)		
Filtration	Mainly on the conditioned outer surface	First dust penetration and then filtration		
Dust penetration	0.63 mg	5.03 mg		
Pressure drop rise	Gradual	Quick		
Cleaning cycle interval	Long	Short		

Pressure Drop and Filter Life


- Initial pressure drop dP approximately 4 to 6 "H2O.
- Very gradually ultrafine and condensable penetrate filter.
- Less than of 3% differential pressure increase per year.
- Performance is not affected by increase in pressure drop.
- Extra fan power is built into the system.
- Filters must be changed when the system runs out of fan.
- <u>Filter change is not triggered by catalyst deactivation or change in PM performance.</u>

7 – 10 years filter life

Presentation Outline


- Technology Basis (SCR)
- System Design
- NOx Control
- Multi Pollutant Performance
- Project Delivery

Typical System Configuration


- 1. If necessary, condition incoming gas to <750°F
- 2. Add sorbent to control acid gases and Hg.
- 3. Add aqua ammonia for NOx reaction.
- 4. Remove solid waste.

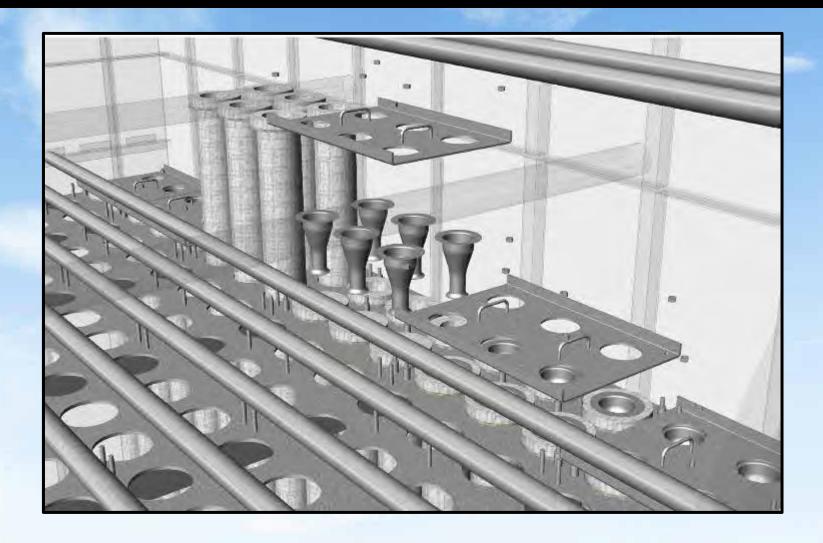
Single Housing Configuration

- 1. Maximum of 500 filters per housing.
- 2. No limit to housings operating in parallel
- 3. Single Housing Height 34'
- 4. Single Housing Width 11'
- 5. Single Housing Length 11' to 38' depending on filter count
- 6. Fully Insulated
- 7. Indoor/Outdoor

Constructed in Four Sections

- 1. Walk-in plenum
- 2. Tube Sheet
- 3. Hopper
- 4. Support Frame

Shipped in four pieces

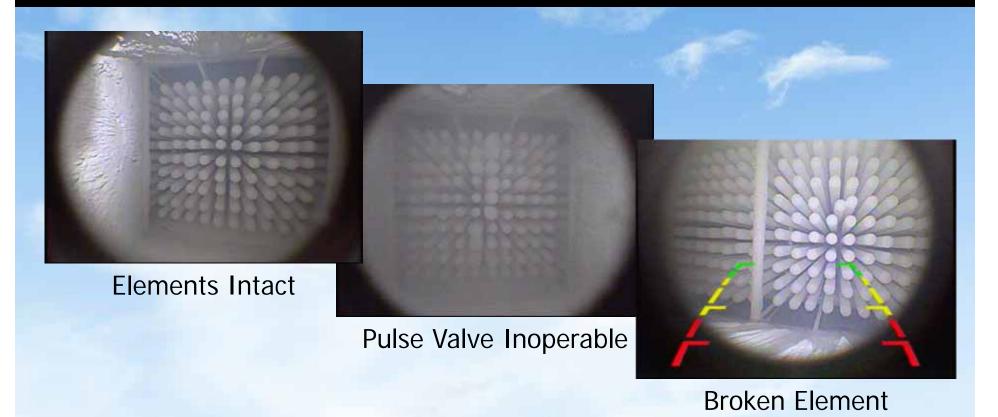

Simple installation with a crane

Filter elements installed in the field by Tri-Mer personnel.

Tube Sheet and Filter Element Hold Down Detail

Filter Element Installation

Filter Gasket, Stud, Spacer, and Hold Down Plate


Completed Assembly with Blow Tubes in Place

Broken Filter Element

System Design System Inspection Camera - Results

- Filters fail at a rate of less than 1 per 500 annually
- Changing a filter requires 4 to 6 hours, most of that is cool down time
- After service gradual heat-up is unnecessary

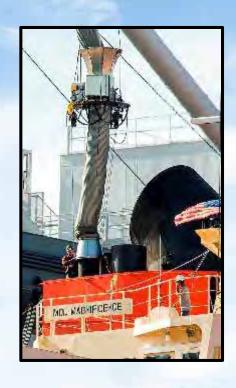
Multiple Filter Housings to Match the Flow

With 3 or More Housings...

- Modules are serviced individually
- Remaining modules treat 100% of the gas flow
- No loss of performance while servicing
- Minimal pressure drop increase while servicing

12 Housings – Kiln Exhaust

- Ceramic Proppants (Fracking)
- 650 F
- NO_x, SO₂, HCI, HF, and PM
- Operational Q1 2013
- Compliance Verified



Diesel Exhaust (PM, SOx, NOx)

Systems for treating diesel exhaust from ships at berth are comprised of 2 principal components.

1 Capture System

Stack adaptor and exhaust shuttle connected to stack of auxiliary engine

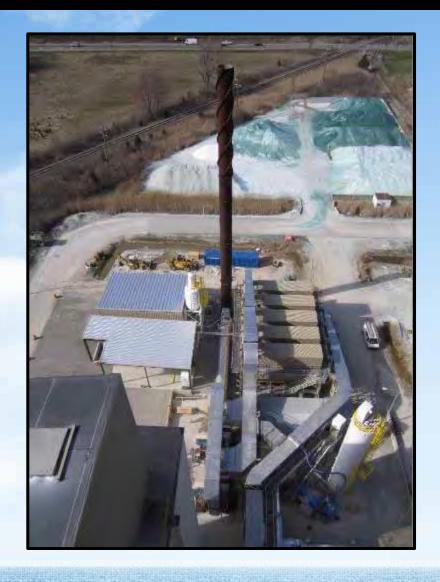
2 Treatment System

Catalytic ceramic filter system configured for treating PM, SO_x, NO_x

9 Housings – Glass Furnace, Tableware

- 3 Housings per Furnace, 3 Furnaces
- 600 °F
- PM, NO_x, SO_x, HCl, and Metals
- Operational Since Jan 2011
- Compliance Verified

6 Housings – Glass Furnace, Containers


- 3 Furnaces
- 600 °F
- PM, NO_x, SO_x, and Metals
- Operational Since Sept 2014
- Compliance Verified

5 Housings – Glass Furnace, Flat Glass

- 1 Furnace
- 725 °F
- PM, NO_x, SO_x, and Metals
- Operational Since April 2015
- Compliance Verified

Experience Counts: 25 Ceramic Filter Projects – Selected List

Project	Туре	ACFM	Emissions	Comments
Kohler Glass, WI	Glass Furnace	12,000	PM, NOx, HF	Specialty glass
Illumina, CA	RTO Exhaust	13,500	PM, HCI, NOx	Biotech company
U of Iowa, IA	Biomass Boiler	15,600	PM, NOx, CO	Boiler MACT
Gallo Glass, CA	Glass Furnace	23,125	PM, SO2	First module of 6
Military/Siemens, CA	Boiler Exhaust	24,000	PM, NOx, HCl, SO2	Boiler MACT
3M, MN	Production	25,000	PM, NOx	Two projects
Calgon Carbon, AZ	Reactivation Furnace	25,400	PM, SO2, HCI	First industry application
CAEM, Port of LA	Diesel Engine Exhaust	25,900	PM, NOx	Ships at dock
EveryWare Glass, PA	Glass Furnace	29,300	PM, NOx, SO2, Metals	EPA ruling
Durand Glass, NJ	Glass Furnace	106,000	PM, NOx, SO2, Metals	EPA ruling
Ardagh Glass, IL	Glass Furnace	144,000	PM, NOx, SO2, Metals	EPA ruling
AGC Glass, KS	Glass Furnace	150,000	PM, NOx, SO2, Metals	EPA ruling
AGC Glass, TN	Glass Furnace	165,000	PM, NOx, SO2, Metals	EPA ruling
Guardian Glass, MI	Glass Furnace	175,000	PM, NOx, SO2, Metals	EPA ruling,
Imerys, GA	Ceramic kiln	324,000	PM, NOx, SOx, HCl, HF	First industry application
Confidential	Kiln Exhaust	450,000	PM	Design, industry first

Tri-Mer Catalytic Ceramic Filters - Applications

Combust/Incinerate

- Glass furnaces
- Solid fuel boilers
- Syngas cleaning
- Chemical waste
- Medical waste
- Radioactive waste
- Munitions destruct
- Petrochemical sludge
- MSW, scrap tires
- Animal waste

Chemicals & Minerals

- Alumina refining
- Calcium carbide production
- Activated carbon production
- Catalyst production
- Silica production
- Fine chemicals production
- Sulphuric acid plant

Metallurgical

- Secondary aluminium smelting
- Precious metal recovery
- Swarf drying
- Tin smelting
- Lead smelting
- Nickel refining
- Foundries
- Copper smelting
- Steel making

Presentation Outline

- Technology Basis (SCR)
- System Design
- NOx Control
- Multi Pollutant Performance
- Project Delivery

Tri-Mer System – Brief Summary

- Dry powdered sorbent bicarb, trona, or lime is injected into the duct. It immediately starts to react with the SO₂, SO₃, and HCl to form solid particles that will be captured by the ceramic filter.
- Non-hazardous 19% aqueous ammonia is atomized and sprayed into the duct. It immediately turns into a gas and mixes with NO_x. This mixing is not affected by the process PM or sorbent PM.
- The gas stream goes into the filter housing, and the particulate from the process and sorbent is captured on the outside surface of the filters. Filters are periodically cleaned (about twice a day for many applications) with a burst of compressed air while filter housings remain on-line.
- 4. The NO_X and ammonia mixture react on the enormous surface area of the nano-catalysts embedded in the filter walls. The mixture is free from particulate that can blind or poison the catalyst, so the reaction can occur more efficiently and across a much wider temperature range. NO_X is broken down into harmless N₂ and water vapor. There is minimal ammonia slip.
- 5. Treated air exits the ceramic filter system, drawn by an induction fan to the stack.

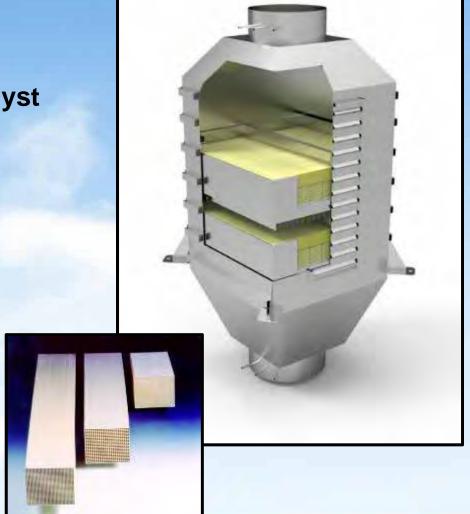
Selective Catalytic Reduction (SCR)

$$2NO_{gas} + 2NH_{3 gas} + \frac{1}{2}O_{2 gas} \xrightarrow{CATALYST} 2N_{2 gas} + 3H_{2}O_{gas}$$

NOx is converted to the harmless basic constituents of our atmosphere, nitrogen and water vapor.

Conventional SCR Catalyst Support Systems

High Removal at >650 F


Blinding and poisoning the catalyst are the greatest drawbacks.

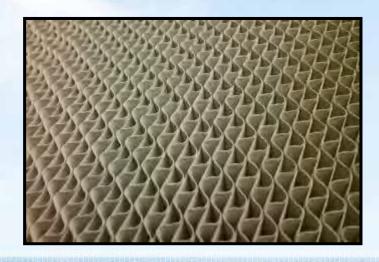
"Hot side"

Reactor placed before any PM or other pollutant removal

"Cold side"

Reactor placed after electrostatic precipitator or fabric baghouse for PM control.

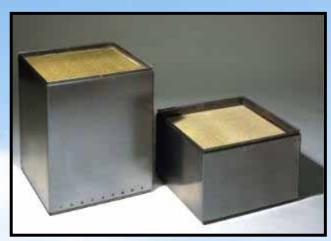
Conventional SCR Blocks and Channels

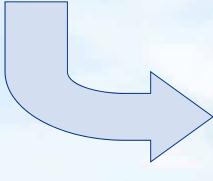

Typical SCR Block Catalysts

Typical temperature range 600 F – 1,100 F

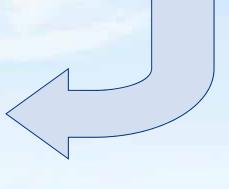
In industrial plants the conventional catalyst types typically operate with 5-15% catalyst effectiveness in the SCR (Selective Catalytic Reduction of NOx by NH3) – Haldor Topsoe, P. Schoubye paper 2006

Gas Channels

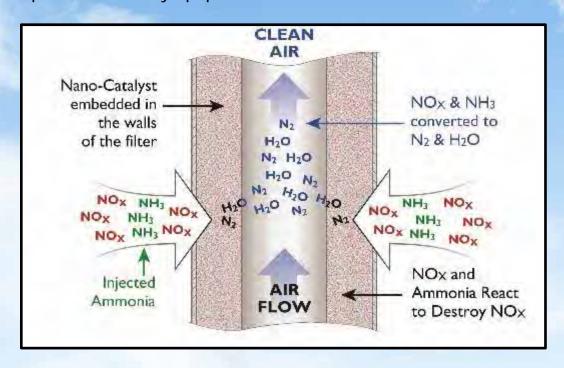



Catalytic Filter Technology for NO_x

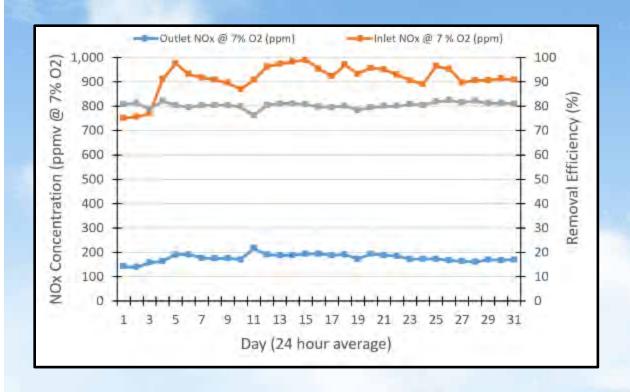
The combination of two well established technologies



Standard filter tube + SCR catalyst (in micronized form Infused in filter walls)

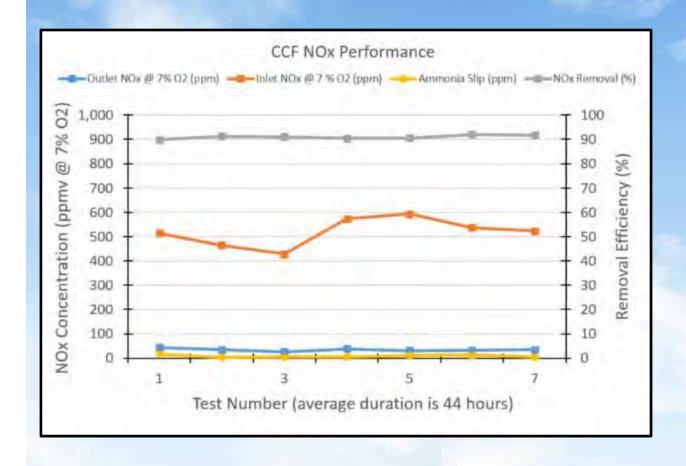


Catalyst Utilization: 6X over Conventional SCR


Utilization is virtually 100%, compared to 15% for traditional SCR Haldor Topsoe, P. Schoubye paper 2006

- Lower temperatures achieve higher removal efficiency.
- 60-70% starting at 350 °F, and over 90% approaching 450 °F.
- Traditional block SCR usually requires 650 °F to reach 90%.

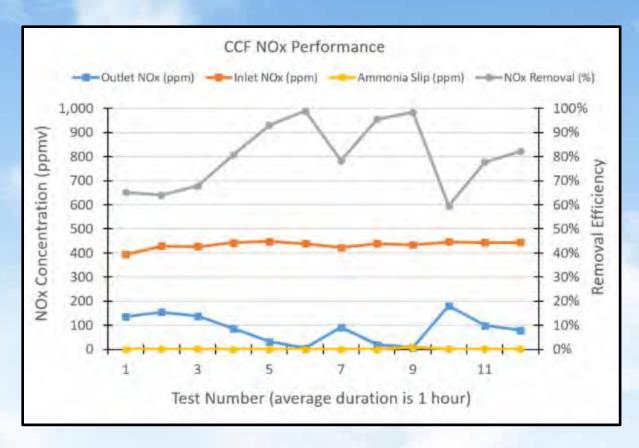
NO_x Control Float Glass Furnace


- Compliance Requirement is 80% Reduction
- Average Reduction = 80.5%
- Ammonia Slip <5 ppmv as Measured by Insitu IR
- Precise Control Minimizes Ammonia Consumption
- Filter Operating Temp = 690F

Average Inlet NOx [ppm] 915.2 Average Outlet NOx [ppm] 176.6 Average NOx Percent Removal [%] 80.5%

NO_x Performance

Multiple Stationary Diesel Generators



- Compliance Requirement is 90% Reduction
- Average Reduction = 91.0%
- Filter Operating Temp = 450F
- Ammonia Slip <5 ppmv as Measured by Insitu IR
- Precise Control Minimizes
 Ammonia Consumption

Average Inlet NOx	[ppm]	519.4
Average Outlet NOx	[ppm]	34.6
Average NOx Percent Removal	[%]	91.0%
Average Ammonia Slip	[ppm]	3.5

NO_x Performance Lignite Coal

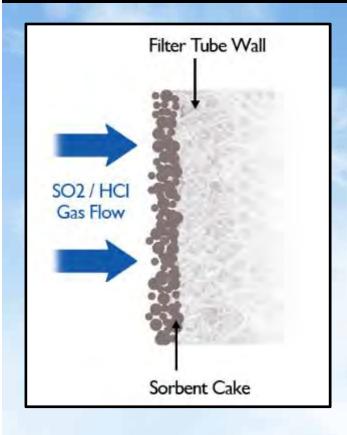
Average Inlet NOx	[ppm]	433.7
Average Outlet NOx	[ppm]	85.3
Average NOx Percent Removal	[%]	80.1%
Average Ammonia Slip	[ppm]	0.9

Presentation Outline

- Technology Basis (SCR)
- System Design
- NOx Control
- Multi Pollutant Performance
- Project Delivery

Multi Pollutant Performance Typical Ceramic Filter PM Results

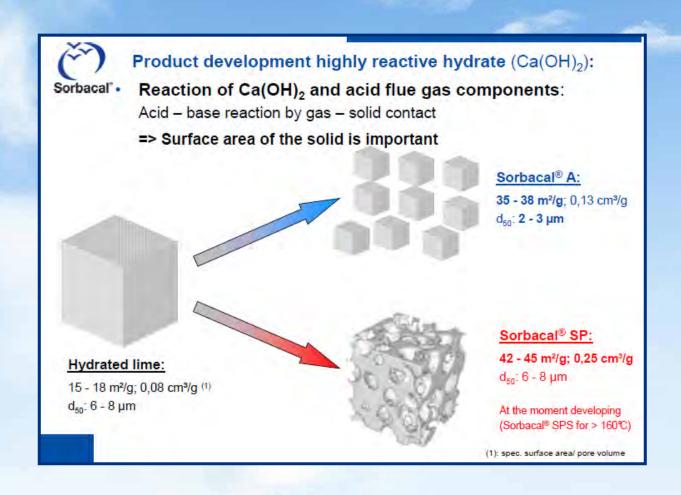
PROCESS	PARTICLE SIZE	INLET PM LOADING		OUTLET PM LOADING		INFERRED EFFICIENCY
	d ₅₀ 1, µm	mg/Nm³	gr/dscf	mg/Nm ³	gr/dscf	%
Aluminum powder production	<50	550	0.24	<1	<0.0004	99.99
Nickel refining	<10	11,800	5.16	<1	< 0.0004	>99.8
Smokeless fuel production	4.8	1000	0.44	1.5	0.0007	99.9
Zirconia production	1.2	8000	3.5	0.8	0.0003	99.85
Secondary aluminum	<1.0	870	0.38	0.5	0.0002	>99.99


^{1.} Diameter of median size particle 2. 1 mg/Nm3 equals 2288 grains/dry standard cubic foot.

Meets all EPA and state requirements across the spectrum of applications.

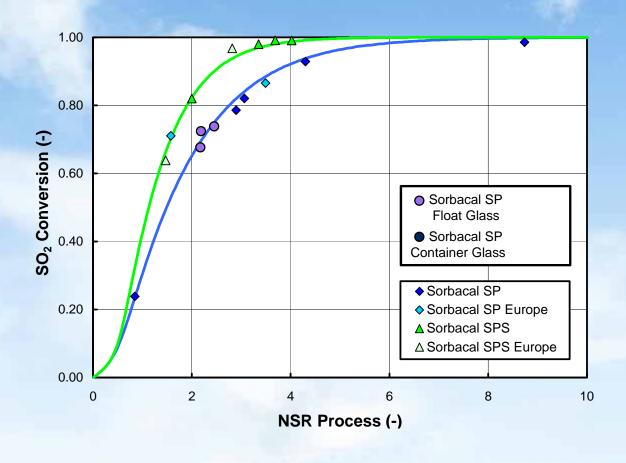
Multi Pollutant Performance

In-Duct Reaction PLUS Sorbent Cake on the Filter


Sorbent Injection Chemistry

$$Ca(OH)_{2 \text{ (powder)}} + SO_{2 \text{ (gas)}} + 1/2O_{2 \text{ (gas)}} \rightarrow CaSO_{4 \text{ (powder)}} + H_2O_{\text{ (gas)}}$$

Multi Pollutant Performance


Lhoist Sorbacal SP Surface Area

Multi Pollutant Performance

SO₂ Reduction on Various Glass Furnace Applications

Presentation Outline

- Technology Basis (SCR)
- System Design
- NOx Control
- Multi Pollutant Performance
- Project Delivery

Project Delivery Tri-Mer Corporation

Established 1960 12 Acre Site Near Detroit, Michigan

Project Delivery

In-House Manufacturing, U.S. based

- Air pollution control (APC) specialists
- Engineer, design, fab, and install
- Wet and dry systems
- In-house equipment fabrication
- Steel and thermo-plastic fab facilities

Project Delivery

200,000 Sq Ft of Engineering Offices and Manufacturing

Project Delivery

Tri-Mer Corp – Turnkey Project Execution

Tri-Mer offers turnkey systems and services:

- Pollution control system design
- Engineering (mechanical, electrical, civil, structural)
- Site work such as demolition
- Site work up-front construction
- Regulatory agency support
- Controls and integration
- Continuous Emission Monitors
- In-house equipment fabrication
- Installation and start-up
- Aftermarket support services

Thank You

Kevin Moss

Business Development Director (989) 321-2991

kevin.moss@tri-mer.com

www.tri-mer.com

