

Expanded Measurement Needs for Process Control and Compliance

Richard M. Himes, P.E. EPRI - Technical Executive

CEMTEK User Group Meeting September 28, 2016

Three Key Aspects of EPRI

Independent

Objective, scientifically based results address reliability, efficiency, affordability, health, safety, and the environment

Nonprofit

Chartered to serve the public benefit

Collaborative

Bring together scientists, engineers, academic researchers, and industry experts

EPRI's Role

Stimulate innovation; help accelerate technology development

Agenda

- Impact of 'disruptors'
 - Broadening scope of measurements
 - Changing approach
- Laser based measurements
- Applications examples
 - SCR tuning process control application
 - HCI compliance measurement example
- Summary

Disruptors Create Change

- Internet Example
 - Email communication
 - Smart phones
 - Commerce (e.g. Amazon)
 - Information (e.g. Google)
- Energy supply
 - Fracking drilling technology
 - Increased supply of oil and natural gas
 - Increased renewable generation
- Resultant change in coal generation
 - Economic stress
 - Reduced manpower
 - Drive to reduce commodity use/manpower

Change in Coal Generation Asset Dispatch

- Previous 'base load' dispatch coal generation assets 'cycled'
- Need for deeper reduced load capability
- Cycling requires more diagnostic measurements for efficient operation
 - Combustion control
 - Air/fuel distribution over range of conditions
 - Emissions control
 - Selective catalytic reduction for NOx control
 - Change in mill patterns and SCR inlet NOx distribution
 - Avoiding catalyst impacts from ABS condensation
 - SO₃ mitigation for optimizing Hg control with powder activated carbon (PAC)
 - FGD ORP impacts from higher excess O₂ operation

Broadening Scope of Utility Measurements

Process Control and R&D

- Combustion
 - O_2
 - CO
- Post Combustion NOx Control
 - NOx (NO + NO₂)
 - $-NH_3$
 - -CO₂
- Mercury Control
 - Speciated Hg
 - HCI
 - $-SO_3$

Compliance

- Criteria Pollutants
 - NOx
 - -SO₂
 - Diluent for conversion from volumetric to mass basis
 - O₂ or CO₂
- Hg
- HCI
- NH₃ implemented in some states
- SO₃ (?)

Additional process control measurements must provide cost/benefit

Traditional SCR Control Measurement Approach

- SCR outlet duct nominally 840 ft²
 - One measurement point per ~210 ft²

- SCR inlet duct nominally 1,000 ft²
 - One measurement point per ~500 ft²

Laser Based Measurements

Molecules Absorb Light at Specific Wavelengths

Fiber Coupled CO₂ Laser Package

NO Laser Monitor Development Non-Fiber Coupled System

- EPRI R&D project with Stanford University
- Results used to develop commercial prototype with Unisearch Associates
- Completed laboratory tests confirming linearity, detection limits, and absence of interference
- Exploring approach to fiber couple laser to simplify operation

How to Implement? Not Always Easy

Range of Implementation Approaches

Emerging Laser Measurement Technologies

Multi-Path Cell

Multi-Fiber Bundle

- Enables lasers with different wavelengths to be combined over same path
- Issue of window material compatibility for different laser λ
- Requires separation of lasers to individual detectors

Potential Advantages of Optical Based Measurements

- In situ measurement can eliminate potential biasing reactions for reactive species
- Line-of-sight average can be more representative
- Potential for faster time response
- Reduced cost per measurement point
 - Situations where beam splitting or multiplexing available
- Alternative optical based measurement approaches can also provide species specific advantages
 - FTIR
 - UV-DOAS
 - External cavity quantum cascade lasers

Example of Process Control Application

SCR Tuning and Optimization

Diagnostic measurements enable measurement of NH₃/NOx volumetric ratios to enable more optimized SCR performance

Manual/Automated SCR Tuning Approach

- SCR designed for inlet NOx of 0.40 lb/MBtu
 - Reactor design for 90% ∆NOx
 - Economizer bypass for flue gas temperature control
- Urea to ammonia reagent system
 - 16 Delta Wing points of reagent injection
 - 16 NH₃ TDL measurement lines of sight aligned with each Delta Wing
- Conducting test to explore NH₃ slip vs SCR ∆NOx >90%
 - Use NH₃ TDL to manually tune any regions observed with high NH₃
 - Identify maximum achievable ΔNOx while maintaining NH₃ slip target

Example of Compliance Measurement Application

HCI Compliance Measurements

- EPA PS-18
 - Interference test
 - Beam intensity test (IP-CEMS only)
 - Temperature verification procedure (IP-CEMS only)
 - Pressure verification procedure (IP-CEMS only)
 - Level of detection determination
 - Response time test
 - Measurement error test
 - Calibration drift test
 - Stability criterion
 - Relative accuracy test
- Nominal 50 HCl TDL applications
 - Wet, dry, and bypass stacks
 - Some issues with meeting zero/span criterion due to changing backgrounds on bypass stacks

Laboratory Laser Test Facility

- Two meter laser test cell at UC Riverside
 - Built under EPRI sponsorship
 - Quartz lined for NH₃ tests up to 800 F
 - Teflon lined for HCl tests up to 375 F
 - Temperature control from ambient to 800 F
 - Moisture control up to 25%
 - Calibration gases for target species measured
- Laboratory used to evaluate TDL monitors
 - Ammonia (NH₃)
 - Nitric Oxide (NO)
 - Carbon Monoxide (CO)
 - Carbon Dioxide (CO₂)
 - Oxygen (O₂)
 - Hydrochloric Acid (HCI)

HCI Interference Tests

- Demonstrate monitoring system meets performance requirements
 - Sum of interference responses not greater than 2.5% of the calibration span, or +/-3.0% of the equivalent HCl concentration used for interference test
 - Also acceptable if sum of interference responses not greater than six times the LOD or 0.5 ppm for a calibration span of 5 – 10 ppm
- Interference test gas concentrations
 - CO₂ 15%+/- 1% NO₂ 250+/- 50 ppm
 - CO 100+/- 20 ppm SO₂ 200+/- 20 ppm
 - CH₂O 20 +/- 5 ppm O₂ 3%+/- 1%
 - CH₄ 100+/- 20 ppm H₂O 10%+/- 1%
 - NH $_3$ 10 +/- 5 ppm N $_2$ Balance

Interference Gas or Gas Combination	Cylinder Used	Date of Test	HCI Concentration (2 ppmv) in N2 Only	HCI Concentration (ppmv) w/Interference	Absolute Difference (ppmv)	Average Absolute Difference (ppmv)	
CO, CH4, O2	A	22-Jan-16	2.015	1.948	0.067	1	ł
CO, CH4, O2	A	22-Jan-16	1.976	1.973	0.002		1
CO, CH4, O2	A	22-Jan-16	1.983	1.991	-0.008	0.026	1
CO2, NO,SO2	l D	22-Jan-16	2.029	2.027	0.002		1
CO2, NO,SO2	D	22-Jan-16	1.981	2.003	-0.022	1	l
CO2, NO,SO2	D	22-Jan-16	2.041	2.053	-0.012	0.012	
НСНО	E	22-Jan-16	2.055	2.055	0.000	1	1
HCHO	E	22-Jan-16	2.050	2.048	0.002		
нсно	E	22-Jan-16	2.050	2.053	-0.003	0.002	
SO2	н	23-Jan-16	2.052	2.045	0.006		1
SO2	н	23-Jan-16	2.049	2.046	0.003	1	
SO2	н	23-Jan-16	2.054	2.045	0.010	0.006	
CO2, O2	1 1	23-Jan-16	2.056	2.050	0.007	1	1
CO2, O2	1	23-Jan-16	2.048	2.054	-0.005	1	
CO2, O2	1	23-Jan-16	2.058	2.058	0.001	0.004	
NO2	K	10-Feb-16	2.122	2.015	0.107	T	1
NO2	K	10-Feb-16	2.130	2.052	0.078	1	
NO2	К	10-Feb-16	2.142	2.022	0.120	0.102	
H2O 10%	None	3-Feb-16	2.030	2.011	0.019		1
H2O 10%	None	3-Feb-16	2.019	2.043	-0.024		
H2O 10%	None	3-Feb-16	2.022	2.018	0.004	0.015	
Criteria results:							
Percent of Baseline Concentration			4.18%	Maximum Limit	3.00%	-1.18%	FA
Percent of Span			3.34%	Maximum Limit	2.50%	-0.84%	FA
Sum of Interference Responses <6xLOD(ppmV)			0.167	Maximum Limit	1.2	1.033	PA
Sum of Interference Responses (ppmV)			0.167	Maximum Limit	0.5	0.333	PA
Percent of Span < 5.0 ppmV			0.167	Maximum Limit	0.2	0.033	PA

Note: Interference test passed when at least one criteria is a pass.

Summary

- TDL monitors need to be evaluated under application conditions
 - HITRAN and HITEMP constantly being updated
 - No substitute for lab tests to assess potential interferences and accuracy of monitor analytical approach
- Significant potential benefits with TDL line-of-sight measurements
 - More representative (line-of-sight average vs. single point)
 - Faster time response (in situ vs. extractive)
 - Potentially lower cost (avoid filtration, sample line, conditioning, etc.)
 - Technology rapidly evolving to enable measurement of additional species
- Potential issues
 - Species interferences as a function of concentration and temperature
 - Establishing consistent monitor set up procedure that takes into account differences between lasers and application conditions
 - Viable methodology for incorporating PS-18 requirements (e.g. zero and span)

Summary

- Recent developments show promise regarding single port, close coupled, extractive measurements as option in addition to cross-duct
 - In addition, technology evolving that will enable multiple species measurement over single measurement path
- Conducting lab and field tests of additional lasers for O₂, CO₂, NO, and SO₃
- Projects being conducted to benchmark monitor performance in terms of:
 - Accuracy
 - Monitor reliability
 - O&M requirements
 - Cost effectiveness

Together...Shaping the Future of Electricity

Richard Himes, P.E. 949-766-8470 rhimes@epri.com

