

CEMTEK ENVIRONMENTAL'S

2012 EMISSIONS MONITORING SEMINAR & TRAINING SESSION

September 13-14, 2012 | Santa Ana, California

FTIR Systems & Operation

INDUSTRIAL MONITOR AND CONTROL CORP.

Active & Passive Open Path FTIR

- Active transmission mode uses a light source in the FTIR which is modulated by the instrument and is then transmitted through the gas to be monitored.
- The transmitted beam is captured and analyzed to determine the compounds present and their concentrations.
- Analysis is done using reference standards for each compound collected under controlled conditions of: concentration, temperature, pressure, and path length

Typical Extractive FTIR System

Basic Concepts

Most molecules absorb infrared (IR) light

- The patterns of IR wavelengths (colors) they absorb are unique to each molecule
- The amount of light they absorb is proportional to their concentration

As a Result:

- The presence of specific compounds can be unequivocally determined by the absorption patterns
- The concentration of the compounds can be measured by the strength of the absorption patterns

Overlapped Spectra of NO₂ and NH₃

Compounds Covered

- The FTIR can monitor most molecular species except for homonuclear diatomics (Cl₂, H₂, O₂, N₂, etc.)
- The detection limit varies by compound but all can be detected to sub ppm-levels with small systems and to the low ppb-level with larger systems

Detection Limits

Species	300 Meter	100 Meter	Species	300 Meter	100 Meter
	Open Path	Cell*		Open Path	Cell*
acetaldehyde	20	30	cyclohexane	3	5
acetic acid	5	7 SL	1,2-dibromoethane	5	7
acetone	30	10	m-dichlorobenzene	3	5
acetonitrile	50	70	o-dichlorobenzene	3	5
acetylene	2	2	p-dichlorobenzene	2	3
acrolein	5	7	1,1-dichloroethane	10	10
acrylic acid	10	5 SL	1,2-dichloroethane	30	40
acrylonitrile	6	10	1,1-dichloroehtylene	2	4
ammonia	2	3 SL	dimethylamine	20	30 SL
benzene	25	3**	dimethyl disulfide	10	15
1,3-butadiene	2	3	1,4 dimethyl piperazine	3	5
butane	HC		1,4 dioxane	2	3
butanol	15	20 SL	ethane	10	10
1-butene	10	15	etanol	10	10 SL
cis-2-butene	25	30	ethyl acetate	4	4
trans-2-butene	10	15	ethylamine	20	10 SL
butyl acetate	5	7	ethylbenzene	20	30**
carbon disulfide	dry only	50	ethylene	1	3
carbon monoxide	1	4	ethylene oxide	10	15
carbon tetrachloride	2	2	ethyl mercaptan	50	70
carbonyl sulfide	2	3	formaldehyde	5	8
chlorobenzene	10	10	formic acid	2	3 SL
chloroethane	10	15	furan	3	5
chloroform	2	2	halocarb-11 (CCl3F)	1	1
m-cresol	20	15	halocarb-12 (CCl2F2)	1	1
o-cresol	4	8	halocarb-22 (CHCIF2)	1	1
p-c resol	10	15	halocarb-113 (CFCl2CF2Cl)	2	2

Detection Limits

Species	300 Meter	100 Meter	Species	300 Meter	100 Meter		
	Open Path	Cell*		Open Path	Cell*		
hexafluoropropene	1	2	ozone	3	5		
hydrocarbon continuum	10	15	pentane	HC			
hydrogen chloride	2	4	phosgene	1	2		
hydrogen cyanide	5	4	phosphine	2	3		
hydrogen sulfide	300	500	propane	10	10		
isobutane	2	1	propanol	20	30 SL		
isobutanol	4	6 SL	propionaldehyde	10	15		
isobutyl acetate	5	7	propylene	4	10		
isobutylene	4	4	propylene dichloride	10	15		
isoprene	4	5	propylene oxide	10	15		
isopropanol	10	10 SL	pyridine	20	20		
isopropyl ether	10	5	silane	1	1		
methanol	4	6 SL	styrene	1	2		
methylamine	20	20 SL	sulfur dioxide	30	30		
methyl benzoate	20	30	sulfur hexafluoride	<1	0.1		
methyl chloride	60	80	1,1,1,2-tetrachloroethane	4	6		
methylene chloride	5	8	1,1,2,2-tetrachloroethane	20	16		
methyl ether	10	15	tetrachloroethylene	2	2		
methyl ethyl ketone	40	60 SL	toluene	25	10**		
methyl isobutyl ketone	15	25 SL	1,1,1-trichloroethane	4	10		
methyl mercaptan	40	60	1,1,2-trichloroethane	10	15		
methyl methacrylate	5	5	trichloroethylene	2	3		
2-methyl propene	2	4	trimethylamine	10	15 SL		
morphaline	2	3	1,2,4-trimethylbenzene	5	7		
nitric acid	1	2	vinyl chloride	4	5		
nitric oxide	25	20	m-xylene	10	10**		
nitrogen dioxide	50	50	o-xylene	20	5**		
nitrous acid	5	7	p-xylene	20	10**		

Transmittance of an Absorption Cell

$$7(\nu) = \frac{I(\nu)}{I_o(\nu)} = \begin{cases} 0\% \\ 100\% \end{cases}$$

Transmittance for Molecules

$$\tau (v) = I(v)/I_o(v)$$
$$= e^{-\kappa(v)CL}$$

Where:

k(n) = the gas absorption coefficient

C = the gas concentration

L = The optical path length

Transmittance for Molecules (cont.)

Absorbance =
$$-\log_{10} \{ t(n) \}$$

$$= - \log_{10} \left\{ e^{-\kappa(v) C L} \right\}$$

=
$$(0.434) \kappa(v) C L$$

Scales as concentration times path length

Transmittance Spectrum of HCN

Absorbance Spectrum of HCN

Measured Spectra of Phenol at Various Concentrations

Schematic of FTIR Modulator

Typical FTIR Interferogram Near Center Burst

Interferogram & Absorbance Spectrum From FTIR

FTIR Processing Sequence

Linear Least Squares Regions and Components

Region	120	જે	ું જ	V _A S	Y _A	NA C	145	CASO	14 CO	(C)	150	138	14	37	34.5	Chi	21	(2) ·	16°	, O2
743.50	1	-	S	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
766.25	1	-	1	-	-	-	-	-	-	-	-	-	-	S	-	-	-	-	-	-
889.50	- 1	-	-	- 1	-	-	-	-	-	-	-	-	S	-	-	-	-	-	-	-
937.50	S	-	-1	S	-	S	S	-	-	-	-	S	-	-	-	-	-	-	-	-
1009.00	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	S	-	-	-
1035.50	1	-	-1	1	-	-	-	-	S	S	S	-	-	-	-	-	1	-	-	-
1095.00	1	-	-	1	-	-	-	-	-	-	-	-	-	-	S	-	-	-	-	-
1148.00	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
1900.00	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S	-
2138.50	- 1	S	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2207.50	l l	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S	-	-
2787.00	1	-	-	-	-1	-	-	S	I	-	-	-	-	-	-	S	-	-	-	-
2932.50	1	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Observed Spectrum

Houston, Texas 15 April 1991

Observed Spectrum

Houston, Texas 15 April 1991

Data C3H6 Isobut CO2

─ Data ─ C3H6 Isobut CO2

Data — C3H6 — Isobut CO2

Data — C3H6 — Isobut — CO2

The Base Unit

- The unit utilizes a 0.125 cm⁻¹ "dash-pot" interferometer with "dynamic alignment" both of which provide stability critical for field work
 - The "dash pot" consists of a graphite piston running in a precision glass tube, it has only one degree of freedom and as a result is very stable and immune to vibration
 - The "dynamic alignment" is laser controlled and actively aligns the FTIR thousands of times per second providing additional immunity to vibration and temperature variations

Base Unit Accessories

- The modular arrangement allows use of both <u>cell-</u> <u>based</u> and <u>open-path</u> accessories with one base unit
- The <u>cell-based</u> accessories are used for <u>extractive</u> monitoring in: ambient air, industrial process streams, stacks, or abatement systems
- The <u>telescope-based</u> accessories are used for <u>open-path</u> monitoring in: the ambient air, at the fence-line, or around process areas

Cell Based Accessories

- The cell-based accessories use heated cells and extraction lines at temperatures up to 200°C, allowing for monitoring of saturated process streams (hot/wet).
- Typical cell accessories include:
 - Fixed path cells: 5 cm and 10 cm (% concentrations)
 - Variable path cells

```
1 m to 10 m cell (0.1 ppm)
```

4 m to 32 m cell (20 to 50 ppb)

12 m to 80 m cell (3 to 10 ppb)

24 m to 150 m cell (1-5 ppb)

Shell Cell-Based Monitor

Interior of Shell System

Lower-Level FTIR Modulator

Upper-Level Cell and Detector

Passive FTIR Radiometer

Passive Open-Path Signatures

- Any hot gas emits infrared with exactly the same pattern that it has in absorption
- Therefore species in emission spectra can be identified and quantitated in the same manner as they are in absorption spectroscopy
- However
- The strength of emission is proportional to concentration as it is in absorption spectra but also to the temperature of the gas.

Hardware - Passive FTIR At Flare Test

The Signal Observed

The FTIR Signal arises from Four elements:

- Background radiance
- Flare radiance
- Atmospheric Transmission and Radiance

•The Total FTIR Signal M_p is then:

$$R_b * \tau_{plume} \tau_{atm} + R_p * \tau_{atm} + R_{atm} + R_{ftir}$$

The FTIR signal can be reduced to:

$$R_{p} = \frac{(M_{p} - M_{b})*Cal}{\tau_{air} - \frac{(M_{b} - M_{n})*Cal}{L_{bb}^{p}}}$$

 M_p = The measured plume radiance

M_b = The measured background radiance

Mn = The measured cold source background

L^p_{bb} = The Planck function at temperature of plume

Cal = The system calibration function

 τ_{air} = Air Transmission

Flare Efficiency

Extractive Probe Used in TCEQ Flare Validation Test

CE vs. CZG NHV - All TCEQ Steam

CE vs. CZG NHV - All TCEQ Steam

