

Flue Gas Desulfurization
CEMS Design Lessons
Learned and Monitoring
Technologies to Meet the
New Mercury and Air
Toxics (MATS) Rule

Cemtek Environmental, Interactive CEMS Workshop

a technical solution to meet every need...

CEMTEK Environmental Inc. 3041 S. Orange Ave. Santa Ana, CA 92707 800-400-0200

www.cemteks.com

Flue Gas Desulfurization CEMS Design Lessons Learned

Presentation Overview & Agenda

- General CEMS Design Considerations
 - Wet & Dry Scrubber CEMS Design
- CEMS FGD Scrubber Design Experience & Lessons Learned
 - Examples of over a dozen installed & certified FGD CEMS systems
 - Lessons learned from projects
- Mercury and Air Toxics (MATS) Additional Monitoring Requirements
 - Mercury
 - Particulate
 - Acid Gases (HCI)

Flue Gas Desulfurization CEMS Design Lessons Learned

Presentation Overview & Agenda

- General CEMS Design Considerations
 - Wet & Dry Scrubber CEMS Design

Coal Fired Boiler FGD Scrubber General CEMS Design

- CEMS Design Considerations
 - Probe Design and Accessories
 - Corrosion resistant materials for probe tube construction to prevent attack from acid gases (Hastelloy, Inconel, etc.)
 - Heated probe tube in wet stack (saturated) conditions to help prevent corrosion
 - Impingement shield on probe inlet to prevent clogging from wet particulate
 - Demisters to knock down entrained water in sample prior to entering dilution orifice
 - Probe accessibility for maintenance and service
 - Stack clearances for probe installation and removal
 - Temperature effects on the density of the flue gas minimized by the use of a heated orifice

Coal Fired Boiler FGD Scrubber General CEMS Design

- CEMS Design Considerations
 - Sample Umbilical Design
 - Sample line routing and access. Keep in mind access for stack testers and maintenance personnel.

- Heated umbilical for low dilution ratios (higher moisture concentrations)
- Heated umbilical for low CO measurement applications in conjunction with stainless steel tubing

Coal Fired Boiler FGD Scrubber General CEMS Design

- CEMS Design Considerations
 - Dilution Air Cleanup Design
 - Plant air cleanup panel to condition air to instrument grade may be required
 - Redundant dilution air cleanup for added system availability
 - CO and trace gas scrubbers for removal of measured gases

CO2 Adsorbers & Trace Gas Scrubbers

CO Scrubbers

Flue Gas Desulfurization CEMS Design Lessons Learned

Presentation Overview & Agenda

- CEMS FGD Scrubber Design Experience & Lessons Learned
 - Examples of over a dozen installed & certified FGD CEMS systems
 - Lessons learned from projects

Coal Fired Boiler Nebraska Power Plant

Dry FGD CEMS Application

- Application Summary
 - Unit 2 retrofit with DFGD scrubber technology
 - Unit 2: 682 MW
 - CEMS Configuration
 - Dilution Extractive CEMS (25:1 dilution ratio)
 - Out-of-stack dilution probe
 - Redundant dilution air cleanup panel
 - FGD Inlet CEMS measuring SO₂ & CO₂
 - Stack CEMS measuring NO_X, SO₂, CO & CO₂
 - Stack measurement of moisture and O₂ for process control using in-situ monitors
 - Stack pitot tube flow monitor
 - Stack opacity monitor
 - Stack continuous mercury monitoring system added to CEMS shelter a year after CEMS startup

Coal Fired Boiler Nebraska Power Plant

Dry FGD CEMS Application

- Lessons Learned
 - In-situ O₂ monitor integrated into probe head experienced premature failure.
 - Pressure compensation after startup required a software change.

- Application Summary
 - Unit 1 & 4 retrofit with WFGD scrubber technology
 - Unit 1: 550 MW
 - Unit 4: 560 MW
 - CEMS Configuration
 - Dilution Extractive CEMS (100:1 dilution ratio)
 - In-stack dilution probe
 - Air compressor utilized as primary source of dilution air
 - Redundant dilution air cleanup panel
 - FGD Inlet CEMS measuring SO₂ & CO₂
 - Stack CEMS measuring NO_x, SO₂ & CO₂
 - Stack ultrasonic flow monitor
 - Stack particulate CEMS using forward scattering light technology

- Lessons Learned
 - Lightning protection modules essential to protecting critical equipment.
 - Blown permeation tube in the stack SO₂ analyzer lead to extremely slow, low level response times during system startup.

- Application Summary
 - Unit 1, 2, 3 & 4 retrofit with WFGD & DFGD scrubber technology
 - Unit 1: 300 MWUnit 3: 268 MW
 - Unit 2: 510 MWUnit 4: 268 MW
 - CEMS Configuration
 - Dilution Extractive CEMS (100:1 dilution ratio)
 - Out-of-stack dilution probe
 - Dilution air cleanup panel
 - Heated stack sample umbilical
 - FGD Inlet CEMS measuring SO₂ & CO₂ for Units 1 & 2
 - Stack CEMS measuring NO_X, SO₂ & CO₂ for Units 1 & 2
 - Stack CEMS measuring NO_x, SO₂ CO & CO₂ for Unit 4
 - Stack ultrasonic flow monitors for Units 1, 2 & 4
 - Stack opacity monitor for Unit 4
 - Sorbent trap mercury monitoring systems for Units 1, 2, 3 & 4
- © 2012 Cemtek Environmental, Inc. Ontinuous mercury monitoring system for Unit 2

Wet FGD CEMS Application

- Lessons Learned
 - Site personnel prefer the sorbent trap mercury system to the continuous mercury monitoring system due to maintenance time and cost.

Secure umbilical support while hanging the sample line is critical.

Coal Fired Boiler West Virginia Power Plant

- Application Summary
 - Unit 1, 2 & 3 in-field CEMS rebuild on WFGD application
 - Unit 1: 713 MW
 - Unit 2: 710 MW
 - Unit 3: 711 MW
 - CEMS Configuration
 - Dilution Extractive CEMS (100:1 dilution ratio)
 - Out-of-stack dilution probe
 - Redundant dilution air cleanup panel
 - Stack CEMS measuring NO_X, SO₂ & CO₂
 - Stack ultrasonic flow monitor
 - In-field rebuild utilizing existing CEMS shelter
 - Integrated with existing CEMS data logger and DAHS

Coal Fired Boiler West Virginia Power Plant

Wet FGD CEMS Application

- Lessons Learned
 - Close communication essential from project planning stage for an in-field rebuild to ensure that the placement pieces will mate with existing infrastructure.
 - Complete data for flow monitor manufacturer review important to identify correct transducer for the application.

Before

After

- Application Summary
 - Unit 1 & 2 retrofit with WFGD scrubber technology
 - Unit 1: 360 MW
 - Unit 2: 590 MW
 - CEMS Configuration
 - Dilution Extractive CEMS (125:1 dilution ratio)
 - Out-of-stack dilution probe
 - Dilution air cleanup panel
 - Heated stack sample umbilical
 - FGD Inlet CEMS measuring SO₂ & CO₂
 - Stack CEMS measuring NO_x, SO₂ & CO₂
 - Stack ultrasonic flow monitor
 - Inlet opacity monitor

Coal Fired Boiler Illinois Power Plant

- Lessons Learned
 - NO_X analyzer linearity issues from using a span range significantly smaller than analyzer full scale range.
 - Dilution ratio of 125:1 can be cumbersome in doing quick calculations.

Coal Fired Boiler New Hampshire Power Plant

- Application Summary
 - Unit 1 & 2 retrofit with WFGD scrubber technology
 - Unit 1: 113 MW
 - Unit 2: 320 MW
 - Common stack for Unit 1 & 2
 - CEMS Configuration
 - Dilution Extractive CEMS (100:1 dilution ratio)
 - Out-of-stack dilution probe
 - Redundant dilution air cleanup panel
 - Heated stack sample umbilical
 - FGD Inlet CEMS measuring NO_X, SO₂ & CO₂ on each inlet duct
 - Stack CEMS measuring NO_X, SO₂ & CO₂ on common stack
 - Inlet duct pitot tube flow monitors
 - Stack ultrasonic flow monitor
 - Inlet duct opacity monitors

Coal Fired Boiler New Hampshire Power Plant

- Lessons Learned
 - CEMS startup scheduled for Spring 2012
 - State environmental agency required revisions to monitoring plan.
 Important to submit early for inclusion of revisions.

- Application Summary
 - Unit 1 & 2 retrofit with WFGD scrubber technology
 - Unit 1: 389 MW
 - Unit 2: 384 MW
 - CEMS Configuration
 - Dilution Extractive CEMS (50:1 dilution ratio)
 - Out-of-stack dilution probe
 - Redundant dilution air cleanup panel
 - FGD Inlet CEMS measuring SO₂ & CO₂
 - Stack CEMS measuring NO_X, SO₂, CO & CO₂
 - Stack multi-point pitot tube flow monitor
 - Stack opacity monitor
 - Stack particulate CEMS using forward scattering light technology
 - Integration of existing sorbent trap mercury monitoring system

Coal Fired Boiler Arizona Power Plant

- Lessons Learned
 - Two-part shelter used to fit through access door for installation in base of stack.
 - Site provided particulate monitor required an adapter flange to mate with new stack ports.

Wet FGD & SCR CEMS Application

- Application Summary
 - Unit 2 retrofit with WFGD scrubber technology & SCR NO_x control
 - Unit 2: 225 MW
 - CEMS Configuration
 - Dilution Extractive CEMS (100:1 dilution ratio)
 - Out-of-stack dilution probe
 - Dilution air cleanup panel
 - Heated stack sample umbilical
 - FGD Inlet CEMS measuring SO₂ & CO₂
 - SCR Inlet CEMS measuring NO_X & CO₂
 - ID Fan Outlet CEMS measuring NO_x, SO₂ & CO₂
 - ID Fan Outlet ultrasonic flow monitor
 - ID Fan Outlet particulate CEMS using forward scattering light tech
 - 3 point TDL monitor used for measuring SCR ammonia slip

Wet FGD & SCR CEMS Application

- Lessons Learned
 - No issues encountered during system manufacturing, startup, and certification.
 - Result of multiple projects between Cemtek, the project EPC contractor, and the plant Owner.

New Regulations Monitoring Requirements

Presentation Overview & Agenda

- Mercury and Air Toxics (MATS) Additional Monitoring Requirements
 - Mercury
 - Particulate
 - Acid Gases (HCI)

a technical solution to meet every need...

CEMTEK Environmental Inc. 3041 S. Orange Ave. Santa Ana, CA 92707 800-400-0200

www.cemteks.com

Mercury Fountain by Alexander Calder Joan Miro Museum in Barcelona, Spain Copyright ©2008 Theodore W. Gray

Regulations, where do we stand?

- Since vacating the Clean Air Mercury Rule (CAMR), the implementation of mercury monitoring has primarily fallen on the state and local regulators.
- The EPA often uses Consent Decrees to mandate mercury monitoring.
- Cement MACT requires plants to monitor mercury emissions in kiln exhaust.
- More industry monitoring on the horizon.
 - Mercury and Air Toxics (MATS) Rule

- Detection Technologies
 - Continuous Monitoring

Cold Vapor Atomic Fluorescence

Example: Thermo Freedom Mercury Series

Continuous Batch Measurement

Pre-Concentration on Gold Filter, Thermal Desorbtion, Atomic Fluorescence

Example: Tekran Series 3300

Long Term Batch Measurement

Sorbent Trap or Appendix K

Example: Apex Instruments

- Dilution based measurement
- Inertial Filter Sample Conditioning
 - Conversion at the Stack
 - Direct Measurement CVAF
 - High sensitivity
 - True real-time monitoring
 - Modular design
 - iSeries platform

Model 3330 Inertial Probe

Model 2537A AF © 2012 Cemtek Environmental, Inc. Analyzer

Model 3320 Sample Conditioner

Model 3310 Calibration Unit

Principles of Operation

- Mercury in sample gas is pre-concentrated onto (pat'd) pure gold cartridge
- Adsorbed mercury is thermally desorbed
- Detected by atomic fluorescence detector
- Two cartridges are used to alternately sample and desorb allowing continuous operation
 - No gaps in data stream

HGP Dual Trap Sampling Probe

Configuration:

- Heated Sample Probe –Dual Probe Heaters
 - Length (4,6,9,12ft Standard)
 - Material –C276 Hastelloy or 316 SS
 - Enclosure Insulated SS Junction Box
 - Trap Sizes 10mm Large Standard
 - Optional 6mm Small Trap Adapter
 - Paired trap holders
 - Pitot Tube Optional S Type Pitot

Sorbent Trap

Configuration:

- Section 1: Sample Collection Section
- Section 2: Breakthrough Indicator Section
- Section 3: Vapor-Spike Section to Measure Recovery

Method Comparison

Detection Method	Advantages	Disadvantages
Continuous Monitoring	 True real time feedback for process control. 	 Large upfront investment costs Maintenance intensive system NIST traceable calibration gases/sources issue Consumable chlorine gas for mercuric chloride generator
Continuous Batch Measurement	 Lower detection levels possible due to time integration of sample. 	 Large upfront investment costs Maintenance intensive system NIST traceable calibration gases/sources issue
Long Term Batch Measurement	 Lesser initial investment for system startup. 	 Labor intensive process requiring post installation maintenance and analysis costs Must climb stack on daily/weekly basis for sample collection Glass trap breakage - loss of data Sample breakthrough - loss of data Chain of custody sample issues

Particulate Matter
Monitoring
Technologies
and
Detection
Principles

a technical solution to meet every need...

CEMTEK Environmental Inc. 3041 S. Orange Ave. Santa Ana, CA 92707 800-400-0200

www.cemteks.com

Why are PM CEMS Important?

- Opacity correlates poorly to PM emissions
 - PM CEMs can address the shortfalls of continuous opacity monitors (COMs)
 - With the onset of continuously decreasing limits of SO₂ and the concern of SO₃ from SCR installations, wet scrubbers have proven to be a highly efficient means of reducing SO₂, SO₃ and fine particulates; however a wet gas effluent is a result. This result is in the form of wet particulate and water droplets.
 - The Mercury and Air Toxic Standards (MATS) sets new standards for PM as a surrogate for non-Mercury metals.

Where are PM CEMS Being Installed?

- Proposed Boiler MACT applications (Industrial and Utility)
- Scrubbed stack PM monitoring
- New coal-fired power plant permits
- EPA consent decrees

40CFR60 Appendix B Performance Specification 11

- The purpose of PS-11 is to establish the initial installation and performance procedures required for the evaluating the acceptability of a PM CEMS.
- PS-11 applies to any PM CEMS that is required by Title 40 of the Code of Federal Regulations (CFR) to install and operate a PM CEMS.
- PS-11 requires a site to perform initial installation and calibration procedures that confirm the acceptability of the PM CEMS.
- A site specific correlation of the PM CEMS must be developed to establish response against manual gravimetric reference method measurements including Method 5 and 5l and Method 17.

PS-11 provides:

- Guidelines for selecting a PM CEMS
- Installation location guidance
- Procedures for certifying a PM CEM
- Minimum performance limits
- Example calculations

Principal Technologies used

- Light Scattering
 - Can measure very low dust levels.
 - Some practical problems.
- Beta Attenuation
- Uses continuous paper tape filter.
- Dust particles adhering to the filter absorb beta-particles emitted by radioactive source. This absorption gives a measure of dust density.
- Probe Electrification (Triboelectric)
 - Sensitive
 - High accuracy
 - Requires compensation for flow, temperature, etc.

Design Considerations and Selection Parameters

Tunable Diode Laser Spectroscopy Detection Principles For Monitoring NH₃, HCI & HF

a technical solution to meet every need...

CEMTEK Environmental Inc. 3041 S. Orange Ave. Santa Ana, CA 92707 800-400-0200

www.cemteks.com

Purpose for monitoring Ammonia (NH₃) Slip

- Regulatory emissions limits for both NO_X and NH₃ slip
- Overall process efficiency
- •Corrosion and maintenance of equipment (air preheater, etc.)
- Economic Considerations:
 - NO_x emission trading credit maximization
 - Contamination of fly ash
 - Cost of consumable ammonia/urea

Purpose for monitoring HCI

- Regulatory emissions limits becoming more common requirements in air permits
- •New rules call for continuous monitoring (MATS, Cement MACT)

Tunable Diode Laser Measurement Technique

Tunable Diode Laser Measurement Technique

In the Region of Wavelength Absorption

Emission Wavelength

Tunable Diode Laser Measurement Technique

Absorbed intensity, $\delta I = I_o - I$

Single Pass Stack Configuration

Practical Applications for the TDL

- HCI Monitoring
 - Coal Fired Power Plants
 - HCl injection for mercury control by promoting formation of mercuric chloride
 - Waste-to-Energy Applications
 - Plastics in fuel stock form HCI during combustion process
 - Wood-fired Boiler Applications
 - Logs transported to lumber mill Cogen and power plant facilities can absorb salt (NaCl) when in contact with salt water during transport and form HCl during combustion process
 - Cement Plants (HCI monitoring requirements in Cement MACT)

Coal Fired Boiler-Dry FGD HCI Application

HCI Measurement

- Application Summary
 - Coal fired boiler with dry FGD scrubber
 - 15 foot detection path with 0.2 ppm detection limit
 - 478 foot distance between analyzer and stack optics
 - On-stack blowers to keep optic windows clean
 - System configured with flow-through audit cell using best quality
 HCl calibration gas cylinder available
 - Lessons Learned
 - Anti-reflective coating added to optics window to limit optical noise
 - Pushing the analyzer detection limit, typically measuring nearly zero amount of HCl in stack flue gas
 - Zero drift issue that required a software change
 - Original bench alignment of flow-through cell introduced optical noise. Changed to cell integrated with optical bench to eliminate
 - Wet stacks may require heated optics windows

Tunable Diode Laser Audit Method

Flow-Through Audit Cell

- Dynamic spiking audit
- HCI application with 1 1 ½ minute response time with 15 foot calibration cylinder distance
- Short recovery time
- Temperature correction factor used to account for difference between flow through cell and flue gas temperatures

Contact Information

Tim Kuiken

Midwest Regional Sales Manager

Cemtek Environmental

Ph: (714) 904-6276

tkuiken@cemteks.com