Combustion and Post Combustion System Optimization

L. Muzio

Fossil Energy Research Corp.

Laguna Hills, CA

Cemtek 2012 Emissions Monitoring Seminar & Training!

September 13-14, 2012

Multipoint Instrumentation: FERCo'S MCDA

Traditional Point-by-Point

96 points x 2-3 minutes/point ⇒ 4-5 hours

MCDA

96 points x 5 min/12 pts ⇒ 40 minutes

SCR Performance Issues

NH3/NOx Maldistribution at Catalyst Inlet

- Very Important Operating Parameter
- For GTs it is determined by a) velocity profile at the AIG, and b) Ammonia flow from the AIG lances

Velocity Maldistribution at the Catalyst Inlet

- Not very important in terms of performance
- Catalyst Activity
- CEMs Relative Accuracy Tests & CEMs Measurements
 - NH3/NOx Maldistribution generates NOx maldistributions in the stack
 - Can impact RATA tests
- Gas Sneakage
 - Flue gas bypassing the catalyst can put compliance in jeopardy

Gas Turbine SCR AIG Tuning

- •Tuning is facilitated by installing a permanent sample grid at the catalyst exit:
 - •Not feasible to manually traverse a large combined cycle system for AIG tuning
 - •Typically need 36-60 probes depending on AIG design
- •With permanent probes tuning can typically be done in one day

Tuning Example

As Found

Tuned

SCR Process Model Indicates Compliance

What Can Lead to Non Compliance: Poor NH3/NOx Distribution?

What Can Lead to Non Compliance: Low Catalyst Activity?

What Can Lead to Non Compliance: Leakage?

Coal Combustion Optimization

- Goals
 - •Reduce O2
 - •Reduce CO
 - Reduce NOx
 - •Reduce Slagging/Fouling
- Approach
 - Need to look at gas profiles at the economizer
 Exit
 - •O2, CO, NOx

Example

Front (North)

BOILER

Rear (South)

В9	B10	B11	B12	A12	A11	A10	A9
ECONOMIZER DUCT							
B5	B6	B7	B8	A8	A7	A6	A5
B1	B2	В3	B4	A4	А3	A2	A1

Example

IN-SITU NH3 PROBE

Dual-Pass (Mono-Static) In-Duct Configuration

In-Situ NH₃ Probe Components

NH₃ measurement section

PDA w/cooler

In-Situ Test Data

