Advances and New Direction in Ammonia Slip Monitoring

Cemtek KVB-Enertec CEMS Conference September 11th & 12th, 2018

Dipankar Sarkar Program Supervisor Science & Technology Advancement South Coast Air Quality Management District

Ammonia Slip from Stationary Sources

- Ammonia Slip from Ammonia/Urea Use in SCRs to Control NO_x Emissions
- SCAQMD NH₃ Slip Limits in Existing and Proposed Rules
 - BACT NH₃ Slip Limits
 - ✓ 5 ppm @ 15% O₂ for Gas Turbines (Simple Cycle and Combined Cycle)
 - ✓ 5 ppm @ 3% O_2 for Boilers and Heaters
- Compliance Determination by SCAQMD Method 207.1
 - Initially Quarterly Testing, then Annual Schedule after Consistent Compliance Demonstration
- Many SCAQMD Permits Require NH₃ Slip Determination
 - Differential NOx Measurement
 - Equations Calculate NH₃ Slip
 - Information but not for Compliance

Ammonia Slip Calculation Procedure

- Inlet and Outlet SCR NOx Measurements
- Ammonia Injection Rate
- Dry Exhaust Gas Flow Rate
- Determine NH₃ Slip by Calculation Procedure

Gas Turbine Ammonia Slip

- Large Difference Between Measured NH₃ vs. Calculated NH₃ Slip
- Currently Not Used by SCAQMD for Compliance Purposes

Parameters	Values ***
Gaseous Emissions (Inlet):	
NO _X inlet, ppm volume dry	N/A
Gaseous Emissions (Outlet):	
NO _X outlet, ppm volume dry	3.58
Measured NH ₃ slip, ppm volume dry @ 15% O ₂ *	2.70
Calculated NH ₃ slip, ppm volume dry @ 15% O ₂ **	2.01
Difference between measured and calculated NH ₃ slip	26%

* Using SCAQMD Method 207.1

^{**}NH₃ slip calculated from NO_x CEMS measurement difference of (1) stack gas NO_x and (2) stack gas NO_x and NH₃ slip converted to NO_x

*** Average of 2 runs

Gas Turbine Ammonia Slip

- Large Difference Between Measured NH₃ vs. Calculated NH₃ Slip
- Currently Not Used by SCAQMD for Compliance Purposes

Parameters	Values ***
Gaseous Emissions (Inlet):	
NO _X inlet, ppm volume dry	32.2
Gaseous Emissions (Outlet):	
NO _X outlet, ppm volume dry	2.55
Measured NH ₃ slip, ppm volume dry @ 15% O ₂ *	2.73
Calculated NH ₃ slip, ppm volume dry @ 15% O ₂ **	3.59
Difference between measured and calculated NH ₃ slip	32%

* Using BAAQMD Method ST1B

^{**} NH₃ slip calculated from NO_x CEMS measurement difference of (1) SCR inlet NO_x and (2) stack gas NO_x

*** Average of 3 runs

Ammonia Slip Measurement

- NH₃ is a PM_{2.5} Pre-cursor
 - Reducing NH₃ Slip Reduces PM_{2.5}
 - SCAQMD Non-attainment for PM_{2.5}

• SCAQMD Rule 1325

- PM_{2.5} NSR May be Triggered for NH₃ Emissions >40 tpy
- Continuous and Accurate Measurement of NH₃ Slip = Better Control of NO_x Emissions and NH₃/Urea Injection Rate

• Optimization of NH₃ Injection Rate

- Potential Reduction in NH₃/Urea Usage and Cost Savings
- Monitor SCR Catalyst Performance

Ammonia CEMS

- Calculation Method not Accurate to Determine Compliance with NH₃ Slip Limits
 - Quarterly/Annual Source Testing not Adequate to Determine Ongoing Compliance
- Continuous and Real Time Monitoring is Desirable
 - NH₃ CEMS Provides Accurate Ongoing Compliance Determination with NH₃ Slip Limits

Ammonia CEMS Technologies

- Tunable Diode Laser (TDL)
 - Some Facilities in South Coast Air Basin are Currently Using TDL NH₃ CEMS
- Fourier Transform Infrared (FTIR)
- Most In-Situ Systems

Ammonia CEMS Certification Procedure

• Use CEMS for Compliance/Enforcement

- Discussed with CARB, CEC, BAAQMD, TCEQ, EPA
- TCEQ is using EPA PPS-001

• SCAQMD Proposed Plan for CEMS Certification

- Use EPA PPS-001
 - ✓ Certification
 - ✓ Ongoing CEMS QA/QC
- SCAQMD Method 207.1 as Reference Method for CEMS Certification

Ammonia CEMS Certification Procedure (continued)

• Conduct Demonstration Project

- Certification and Ongoing CEMS QA/QC per EPA PPS-001
 - ✓ RATA, Daily Calibration Tests
 - ✓ CEMS Performance Stability Tests
- SCAQMD Method 207.1 as Reference Method
- Working with CEC, BAAQMD, CARB

Conclusion

• Benefits to Air Quality

- Monitor Ongoing NH₃ Slip Compliance
 - ✓ Specially with Lower NOx Limits in Proposed Rules
- Reduce PM_{2.5} Emissions
- Better Estimate of PM_{2.5} Emissions for SCAQMD Planning and Emissions Inventory Purposes
- Helps Towards Clean Air Goals for South Coast Air Basin
- Benefits to Industry
 - Better Control of NO_x Emissions During Startup and Normal Operation
 - Controlled/Reduced NH₃/Urea Injection Rate
 - Monitor SCR Catalyst Performance and Predict SCR Useful Life
 - Excess NH₃ Slip May Reduce Potential Corrosion Problems Downstream of SCR
 - Monitor Combustion Equipment Performance

Lastly....

Looking for Host Site to Conduct Ammonia CEMS Demonstration Project

Questions & Comments?

Please Contact: Dipankar Sarkar (909) 396-2273

dsarkar@aqmd.gov

South Coast Air Quality Management District