Advances and New Direction in Ammonia Slip Monitoring

Cemtek KVB-Enertec CEMS Conference
September 11th & 12th, 2018

Dipankar Sarkar
Program Supervisor
Science & Technology Advancement
South Coast Air Quality Management District
Ammonia Slip from Stationary Sources

- **Ammonia Slip from Ammonia/Urea Use in SCRs to Control NO\textsubscript{x} Emissions**

- **SCAQMD NH\textsubscript{3} Slip Limits in Existing and Proposed Rules**
 - BACT NH\textsubscript{3} Slip Limits
 - 5 ppm @ 15% O\textsubscript{2} for Gas Turbines (Simple Cycle and Combined Cycle)
 - 5 ppm @ 3% O\textsubscript{2} for Boilers and Heaters

- **Compliance Determination by SCAQMD Method 207.1**
 - Initially Quarterly Testing, then Annual Schedule after Consistent Compliance Demonstration

- **Many SCAQMD Permits Require NH\textsubscript{3} Slip Determination**
 - Differential NO\textsubscript{x} Measurement
 - Equations Calculate NH\textsubscript{3} Slip
 - Information but not for Compliance
Ammonia Slip Calculation Procedure

- Inlet and Outlet SCR NOx Measurements
- Ammonia Injection Rate
- Dry Exhaust Gas Flow Rate
- Determine NH$_3$ Slip by Calculation Procedure
Gas Turbine Ammonia Slip

- Large Difference Between Measured NH$_3$ vs. Calculated NH$_3$ Slip
- Currently Not Used by SCAQMD for Compliance Purposes

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values ***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaseous Emissions (Inlet):</td>
<td></td>
</tr>
<tr>
<td>NO$_x$ inlet, ppm volume dry</td>
<td>N/A</td>
</tr>
<tr>
<td>Gaseous Emissions (Outlet):</td>
<td></td>
</tr>
<tr>
<td>NO$_x$ outlet, ppm volume dry</td>
<td>3.58</td>
</tr>
<tr>
<td>Measured NH$_3$ slip, ppm volume dry @ 15% O$_2$*</td>
<td>2.70</td>
</tr>
<tr>
<td>Calculated NH$_3$ slip, ppm volume dry @ 15% O$_2$**</td>
<td>2.01</td>
</tr>
<tr>
<td>Difference between measured and calculated NH$_3$ slip</td>
<td>26%</td>
</tr>
</tbody>
</table>

* Using SCAQMD Method 207.1
** NH$_3$ slip calculated from NO$_x$ CEMS measurement difference of (1) stack gas NO$_x$ and (2) stack gas NO$_x$ and NH$_3$ slip converted to NO$_x$
*** Average of 2 runs
Gas Turbine Ammonia Slip

- Large Difference Between Measured NH₃ vs. Calculated NH₃ Slip
- Currently Not Used by SCAQMD for Compliance Purposes

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaseous Emissions (Inlet):</td>
<td></td>
</tr>
<tr>
<td>NOₓ inlet, ppm volume dry</td>
<td>32.2</td>
</tr>
<tr>
<td>Gaseous Emissions (Outlet):</td>
<td></td>
</tr>
<tr>
<td>NOₓ outlet, ppm volume dry</td>
<td>2.55</td>
</tr>
<tr>
<td>Measured NH₃ slip, ppm volume dry @ 15% O₂ *</td>
<td>2.73</td>
</tr>
<tr>
<td>Calculated NH₃ slip, ppm volume dry @ 15% O₂ **</td>
<td>3.59</td>
</tr>
<tr>
<td>Difference between measured and calculated NH₃ slip</td>
<td>32%</td>
</tr>
</tbody>
</table>

* Using BAAQMD Method ST1B
** NH₃ slip calculated from NOₓ CEMS measurement difference of (1) SCR inlet NOₓ and (2) stack gas NOₓ
*** Average of 3 runs
Ammonia Slip Measurement

- **NH₃ is a PM₂.₅ Pre-cursor**
 - Reducing NH₃ Slip Reduces PM₂.₅
 - SCAQMD Non-attainment for PM₂.₅

- **SCAQMD Rule 1325**
 - PM₂.₅ NSR May be Triggered for NH₃ Emissions >40 tpy

- **Continuous and Accurate Measurement of NH₃ Slip = Better Control of NOₓ Emissions and NH₃/Urea Injection Rate**

- **Optimization of NH₃ Injection Rate**
 - Potential Reduction in NH₃/Urea Usage and Cost Savings
 - Monitor SCR Catalyst Performance
Ammonia CEMS

• Calculation Method not Accurate to Determine Compliance with NH₃ Slip Limits
 ▪ Quarterly/Annual Source Testing not Adequate to Determine Ongoing Compliance

• Continuous and Real Time Monitoring is Desirable
 ▪ NH₃ CEMS Provides Accurate Ongoing Compliance Determination with NH₃ Slip Limits
Ammonia CEMS Technologies

• **Tunable Diode Laser (TDL)**
 - Some Facilities in South Coast Air Basin are Currently Using TDL NH₃ CEMS

• **Fourier Transform Infrared (FTIR)**

• **Most In-Situ Systems**
Ammonia CEMS Certification Procedure

- Use CEMS for Compliance/Enforcement
 - Discussed with CARB, CEC, BAAQMD, TCEQ, EPA
 - TCEQ is using EPA PPS-001

- SCAQMD Proposed Plan for CEMS Certification
 - Use EPA PPS-001
 - Certification
 - Ongoing CEMS QA/QC
 - SCAQMD Method 207.1 as Reference Method for CEMS Certification
Ammonia CEMS Certification Procedure (continued)

• Conduct Demonstration Project
 - Certification and Ongoing CEMS QA/QC per EPA PPS-001
 - RATA, Daily Calibration Tests
 - CEMS Performance Stability Tests
 - SCAQMD Method 207.1 as Reference Method
 - Working with CEC, BAAQMD, CARB
Conclusion

• Benefits to Air Quality
 ▪ Monitor Ongoing NH₃ Slip Compliance
 ✓ Specially with Lower NOₓ Limits in Proposed Rules
 ▪ Reduce PM₂.₅ Emissions
 ▪ Better Estimate of PM₂.₅ Emissions for SCAQMD Planning and Emissions Inventory Purposes
 ▪ Helps Towards Clean Air Goals for South Coast Air Basin

• Benefits to Industry
 ▪ Better Control of NOₓ Emissions During Startup and Normal Operation
 ▪ Controlled/Reduced NH₃/Urea Injection Rate
 ▪ Monitor SCR Catalyst Performance and Predict SCR Useful Life
 ▪ Excess NH₃ Slip May Reduce Potential Corrosion Problems Downstream of SCR
 ▪ Monitor Combustion Equipment Performance
Lastly….

Looking for Host Site to Conduct
Ammonia CEMS Demonstration Project

Questions & Comments?

Please Contact:
Dipankar Sarkar
(909) 396-2273
dsarkar@aqmd.gov
South Coast Air Quality Management District